Skip to main content

Avoidance of Ecological Risk in Optimal Exploitation of Biological Resources

  • Conference paper
Ecodynamics

Part of the book series: Research Reports in Physics ((RESREPORTS))

  • 129 Accesses

Abstract

There exists a vast number of mathematical models dealing with problems of optimal exploitation of biological resources [1–5]. There appear different types of models. This is due to the fact that people pursue different aims and objects by using mathematical models. The purpose of the paper in hand is to find some general trends for some ecological problems which arise in the exploitation of populations. Therefore simple models of population dynamics are used. Because of their abstractions and idealisations they reveal qualitative results which can be generalized. However they are not suitable to make quantitatively correct predictions for a specific situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, C.W. 1976, Mathematical Bioeconomics. Wiley, New York.

    Google Scholar 

  2. Vincent, T.T. and Skowronski, J.M. (Editors), 1981. Renewable Resource Management. Lecture Notes in Biomathematics, Vol.40, Springer, Berlin.

    Google Scholar 

  3. May, R.M.(Ed.), (1984). Exploitation of Marine Communities, Report of the Dahlem Workshop 1984, Springer, Berlin.

    Google Scholar 

  4. Clark, C.W. (1985). Bioeconomic. Modelling and Fisheries Management. Wiley, New York.

    Google Scholar 

  5. Goh, B.S., 1980. Management and analysis of biological populations. Elsevier, Amsterdam.

    Google Scholar 

  6. May, R.M., Beddington, J.R., Horwood, J.W. and Shepherd, J.G., 1978. Exploiting natural populations in an uncertain world. Math.Biosci., 42: 219–252.

    Article  Google Scholar 

  7. Kirkwood, G.P., 1981. Allowing for risk in setting catch limits based on MSY. Math.Biosci., 53: 119–129.

    Article  Google Scholar 

  8. Ludwig, D., 1981. Harvesting strategies for a randomly fluctuating resource. SIAM J.Appl.Math., 37: 116–174.

    Google Scholar 

  9. Silvert, W., (1977). The economics of over-fishing. Trans. Amer. Fish. Soc. 106, 121–130.

    Article  Google Scholar 

  10. Goel, N.S. and Richter-Dyn, N., 1974. Stochastics models in biology, Academic Press, London.

    Google Scholar 

  11. Kleiding, N., 1975. Extinction and growth in random environments., Theor.Pop.Biol., 8: 49–63.

    Article  Google Scholar 

  12. Turelli, M., 1977. Random environments and stochastic calculus., Theor.Pop.Biol., 12: 140–178.

    Article  CAS  Google Scholar 

  13. Tuckwell, H.C., 1974. A study of some diffusion models of population growth., Theor.Pop.Biol., 5: 345–357.

    Article  CAS  Google Scholar 

  14. Capocelli, R.M. and Ricciardi, L.M., 1971. A diffusion model for population growth in random environment., Theor. Pop. Biol., 5: 28–41.

    Article  Google Scholar 

  15. Gardiner, C.W., 1983. Handbook of stochastic methods., Springer, New York.

    Google Scholar 

  16. Jacobs, J., 1984. Cooperation, optimal density and low density thresholds: yet another modification of the logistic model, Oecologia, 64: 389–395.

    Article  Google Scholar 

  17. Pierre, D., 1969. Optimization theory with applications., Wiley, New York.

    Google Scholar 

  18. Fleming, W.H. and Rishel, R.W., 1975. Deterministic and stochastic optimal control. Springer, New York.

    Google Scholar 

  19. Lee, E.B. and Markus, L., 1967. Foundations of optimal control theory. MacGraw Hill, New York.

    Google Scholar 

  20. Nisbet, R.M. and Gurney, W.S.C., 1982. Modelling fluctuating populations. Wiley, New York.

    Google Scholar 

  21. Hutchinson, C.E. and Fischer, T.R., 1979. Stochastic control theory applied to fishery management. IEEE Trans. Sys. Man and Cybern. SMC-9, 5: 253–259.

    Article  Google Scholar 

  22. Wissel, C., 1985. Solution of the master equation of a bistable reaction system. Physica 128 A, 150–163.

    Google Scholar 

  23. Haken, H., 1983. Synergetics. An introduction. Springer, Berlin.

    Google Scholar 

  24. Wilkinson, J.H., 1965. The algebraic eigenvalue problem. Clarendon Press, Oxford.

    Google Scholar 

  25. Wissel, C., and Schmitt, T., (1987). How to avoid extinction of populations optimally exploited. Math.Biosci. 84, 127–138

    Article  Google Scholar 

  26. Schmitt, T. and Wissel, C., 1985. Interdependence of ecological risk and economic profit in the exploitation of renewable resources. Ecol.Mod. 28: 201–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wissel, C. (1988). Avoidance of Ecological Risk in Optimal Exploitation of Biological Resources. In: Wolff, W., Soeder, CJ., Drepper, F.R. (eds) Ecodynamics. Research Reports in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73953-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73953-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73955-2

  • Online ISBN: 978-3-642-73953-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics