Quasi-Codimension 3 Bifurcation of Invariant T2 Tori for Maps

  • G. Iooss
  • J. E. Los
Conference paper

Abstract

Bifurcations of invariant tori of dimension higher than one for families of maps, or higher than two for families of vector fields in dissipative systems is a puzzling problem. There are experimental evidences of the existence of such tori, for instance in Bénard convection problem [Go-Be] and in Taylor Couette problem [GRS].

Keywords

Convection Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bost]
    J.B. Bost.Tores invariants des systèmes dynamiques hamiltoniens. Séminaire Bourbaki 1984–1985 n° 639.Google Scholar
  2. [B.H.T.]
    H.W. Broer, G.B. Huitema, F. Takens. Unfoldings of quasi-periodic tori. Preprint (Univ. of Groningen).Google Scholar
  3. [Bra-B]
    B.L.J. Braaksma, H.W. Broer. On a quasi-periodic Hopf bifurcation. Ann. IHP. Analyse non linéaire, 4,2,p115–168, (1987).MATHMathSciNetGoogle Scholar
  4. [Ch-Io]
    A. Chenciner, G. Iooss. Bifurcation de tores invariants. Arch. Rat. Mech. Anal.69,3,109–198,(1979)MATHMathSciNetGoogle Scholar
  5. [Ch-Io]
    A. Chenciner, G. Iooss. and Persistance et bifurcation de tores invariants.Arch.Rat.Mech.Anal.71,4,301–306,(1979).MATHMathSciNetGoogle Scholar
  6. [Chen]
    A. Chenciner. Bifurcation de point fixes elliptiques I, courbes invariantes, Publ Math IHES, 61, 67–127, (1985).MATHMathSciNetGoogle Scholar
  7. [Go-Be]
    J.P. Gollub,S.V. Benson. Many routes to turbulent convection.J.Fluid. Mech. 100,3,449,(1980).CrossRefADSGoogle Scholar
  8. [GRS]
    M. Gorman,L.A. Reith,H.L. Swinney. Modulation patterns, multiple frequencies,and other phenomena in circular Couette flow. Nonlinear dynamics. Ann.N.YAcad.Sci.357.10–21.R.Helleman ed. (1980).CrossRefADSGoogle Scholar
  9. [Gu-Ho]
    J. Guckenheimer, P. Holmes. Nonlinear oscillations, Dynamical systems, and Bifurcations of vector fields. Appl.Math.Sci 42. Springer Verlag (1983).MATHGoogle Scholar
  10. [Ham]
    R.S. Hamilton. The inverse function theorem of Nash-Moser. BAMS, 7, 1,65–222, (1982).CrossRefMATHMathSciNetGoogle Scholar
  11. [Her79]
    M. Herman.Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations. Pub.Math IHES, 49, 5–233,(1979).MATHMathSciNetGoogle Scholar
  12. [Her83]
    M. Herman. Sur les courbes invariantes par les difféomorphismes de l’anneau I. Astérisque, 103–104, (1983).Google Scholar
  13. [Io-La]
    G. Iooss,W.F. Langford. Conjectures on the route to turbulence via bifurcations. Nonlinear Dynamics. Ann.N.Y.Acad.Sci, 357, 489–505, R.Helleman ed. (1980).CrossRefADSGoogle Scholar
  14. [Io81]
    G. Iooss. Bifurcations élémentaires-successions et interactions. Nonlinear phenomena in Chemical dynamics. Vidal- Pacault ed, 71–78,(1981).Google Scholar
  15. [Io-Lo]
    G. Iooss, J.E. Los. Quasi-genericity of bifurcations to invariant tori for maps. Preprint 1987.Google Scholar
  16. [Jo-Ze]
    R. Jost, E. Zehnder. A generalization of the Hopf Bifurcation Theorem. Helv. Phys. Acta, 45, 258–276, (1972).Google Scholar
  17. [Lan]
    O.E. Lanford. Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. Lect.Notes.Math,322, p159–192, Springer Verlag(1973).CrossRefMathSciNetGoogle Scholar
  18. [Los1]
    J.E.Los. Phénomènes de petits diviseurs dans les dédoublements de courbes invariantes. Ann. IHP, Analyse non linéaire (to appear).Google Scholar
  19. [Los2]
    J.E. Los. Doubling bifurcation for invariant curves: C invariant curve on Ck cylinder. (Submitted lo Nonlinearity). Preprint n° 124 Univ Nice (1986).Google Scholar
  20. [Mos]
    J. Moser. Convergent series expansion for quasi-periodic motion, Math. Annalen, 169, 136–176 (1967).CrossRefMATHGoogle Scholar
  21. [Ru-Ta]
    D. Ruelle, F. Takens. On the nature of turbulence. Comm. Math. Phys., 20, 167–192, (1971).CrossRefMATHADSMathSciNetGoogle Scholar
  22. [Russ]
    H. Rüssmann.Über invariante kurven differenzierbarer abbildungen eines kreisrings.Nach. Akad. Wiss. Göttingen Math. Phys. K1.II, 67–105,(1970).Google Scholar
  23. [Sac]
    R. Sacker. On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. Thesis, New-York University, IMM-NYU 333, 1964.Google Scholar
  24. [Sch]
    J. Scheurle. Bifurcation of quasi-periodic solutions from equilibrium points of reversible dynamical systems. Arch Rat Mech Anal, 97,2,103–139,1987.CrossRefMATHMathSciNetGoogle Scholar
  25. [Sell]
    G.R. Sell. Bifurcation of higher dimensional tori. Arch.Rat.Mech. Anal. 69,3,199–230,(1979).CrossRefMATHMathSciNetGoogle Scholar
  26. [Yoc]
    J.C. Yoccoz. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann.Sci.ENS.17, 333–359 (1984).MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Iooss
    • 1
  • J. E. Los
    • 1
  1. 1.Laboratoire de Mathématiques, U.A. 168Université de NiceNiceFrance

Personalised recommendations