Advertisement

Microtubule Dynamics: Experimental Evidence and Numerical Modelling

  • P. M. Bayley
  • V. Gal
  • P. Karecla
  • S. R. Martin
  • M. J. Schilstra
  • Y. Engelborghs
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 3)

Abstract

The involvement of GTP hydrolysis in microtubule assembly introduces a number of characteristic observable properties in the steady-state system, namely a time-dependent length redistribution process, a high level of steady-state GTP hydrolysis, unusually fast tubulin exchange kinetics, and, most significantly, the coexistence of interconverting growing and shrinking microtubules within the population. We evaluate and model the implications of these dynamic properties and we present a “Lateral Cap” model in which co-operative interactions in the microtubule end account for observed dynamic properties under both steady-state and extreme non-steady state conditions. We examine the ways in which factors such as metal ions, drugs, and microtubule associated proteins can exert different degrees of control of the behaviour of dynamic microtubule populations appropriate for regulation of their biological function.

Keywords

Microtubule Assembly Individual Microtubule Microtubule Length Microtubule Dynamic Instability Microtubule Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engelborghs YE (1988) In: Avila J (ed) Microtubule Proteins. CRC Press, (In Press).Google Scholar
  2. 2.
    Carlier MF (1988) Cell Biophysics 11, 105–117.Google Scholar
  3. 3.
    Mitchison T, Kirschner MW (1984) Nature 312,232–237 & 237–242.Google Scholar
  4. 4.
    Horio T, Hotani H (1986) Nature 321, 605–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Cassimeris LU, Walker RA, Pryer NK, Salmon ED (1987) Bioessays 7, 149–154PubMedCrossRefGoogle Scholar
  6. 6.
    Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) J. Cell. Biol (in Press).Google Scholar
  7. 7.
    Hallett FR, Keates R. (1985) Biopolymers 24, 2403–2415.PubMedCrossRefGoogle Scholar
  8. 8.
    Carlier MF, Pantaloni D (1978) Biochemistry 17, 1908–1915.PubMedCrossRefGoogle Scholar
  9. 9.
    Karecla PI (1988) Ph.D.Thesis, London University.Google Scholar
  10. 10.
    Martin SR, Butler FMM, Clark DC, Zhou JM, Bayley PM (1987) Biochim. Biophys. Acta 914, 96–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Gal V, Martin SR, Bayley PM (1988) Biochem. Biophys. Res. Commun (in Press).Google Scholar
  12. 12.
    Martin SR, Schilstra MJ, Bayley PM (1987) Biochem. Biophys. Res. Commun. 149, 461–467Google Scholar
  13. 13.
    Bayley PM, Martin SR (Submitted).Google Scholar
  14. 14.
    Farrell KW, Jordan MA, Miller HP, Wilson L. (1987) J. Cell Biol 104, 1035–1046.PubMedCrossRefGoogle Scholar
  15. 15.
    Bayley PM, Schilstra MJ, Martin SR (1988) Biophys. J. 53, 29a.Google Scholar
  16. 16.
    O’Brien ET, Voter WA, Erickson HP (1987) Biochemistry 26, 4148–4156.PubMedCrossRefGoogle Scholar
  17. 17.
    Carlier MF, Melki R, Pantaloni D, Hill TL, Chen Y (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5257–5261.PubMedCrossRefGoogle Scholar
  18. 18.
    Pirollet WD, Job D, Margolis RL, Garel JR (1987) EMBO J. 6, 3247–3252.PubMedGoogle Scholar
  19. 19.
    Mandelkow EM, Lange G, Jagla A, Spann U, Mandelkow E (1988) EMBO J. 7, 357–365.PubMedGoogle Scholar
  20. 20.
    Howard WD, Timasheff SN (1986) Biochemistry 25, 8292–8300.PubMedCrossRefGoogle Scholar
  21. 21.
    Schilstra MJ, Martin SR, Bayley PM (1988) Proceedings: 4th Meeting, European Cytoskeletal Club,(In press).Google Scholar
  22. 22.
    Schilstra MJ, Martin SR, Bayley PM (submitted)Google Scholar
  23. 23.
    Salmon ED, McKeel M, Hays TS (1984) J. Cell Biol. 99, 1066–1075.PubMedCrossRefGoogle Scholar
  24. 24.
    Hays TS, Salmon ED (1986) Cell Motil. Cytoskel. 6, 282–290.CrossRefGoogle Scholar
  25. 25.
    Lambeir AM, Engelborghs Y (1980) Eur. J. Biochem. 109, 619–624.CrossRefGoogle Scholar
  26. 26.
    Lambeir AM, Engelborghs Y (1983) Eur. J. Biochem. 132, 369–373.PubMedCrossRefGoogle Scholar
  27. 27.
    Farrell KW, Wilson L (1980) Biochemistry 19, 3048–3045.PubMedCrossRefGoogle Scholar
  28. 28.
    Margolis RL, Rauch CT, Wilson L (1980) Biochemistry 19, 5550–57PubMedCrossRefGoogle Scholar
  29. 29.
    Sternlicht H, Ringel I (1979) J. Biol. Chem. 254, 10540–10550.Google Scholar
  30. 30.
    Bergen JG, Borisy GG (1983) J. Biol. Chem. 258, 4190–4194.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. M. Bayley
    • 1
  • V. Gal
    • 1
  • P. Karecla
    • 1
  • S. R. Martin
    • 1
  • M. J. Schilstra
    • 1
  • Y. Engelborghs
    • 1
    • 2
  1. 1.National Institute for Medical ResearchLondonUK
  2. 2.Laboratory of Chemical and Biological DynamicsUniversity of LeuvenLeuvenBelgium

Personalised recommendations