Theory and Practice of Minimum Weight Design

  • J.-M. Lagache
Conference paper

Abstract

The present paper relates experiments that have taken place in Ecole Centrale de Paris, within the frame of annual projects, that are freely discussed between teachers and students. The project began about five years ago, with the initial,- and rather naive,- aim of illustrating Michell Theory [1,2,3,4] on simple mechanical examples. Preliminary discussions with students revealed that the design of a windmill was an appealing subject. Integration of a Michell torque transmission cantilever in a low speed vertical axis Savonius engine [5] was thought to be a gentle exercise, because of the low degree of mechanical sophistication of the machine.

Keywords

Torque Epoxy Rubber Hull Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michell A.G.M. (1904). On the Limits of Economy of Material in Framed-Structures. Phil Mag 8 : 589–597Google Scholar
  2. 2.
    Cox H.L. (1965). The Design of Structures of Least Weight. Pergamon, Oxford.Google Scholar
  3. 3.
    Hemp W.S. (1973). Optimum Structures. Clarendon Press, Oxford.Google Scholar
  4. 4.
    Prager W. & Rozvany G.I.N. (1977). Optimization of Structural Geometry. University of Florida.Google Scholar
  5. 5.
    Botrini M. (1982). Etude Aérodynamique d’une Eolienne Savonius. Thesis, University of Aix-Marseille.Google Scholar
  6. 6.
    Higgins G. (1926). Centrifugal Pumps, their Design, Operation and Testing. Crosby Lockwood & Sons. Stationers’ Hall Court, Ludgate Hill.Google Scholar
  7. 7.
    Benjamin B.S. (1969). Structural Design with Plastics. Van Nostrand, New York.Google Scholar
  8. 8.
    Chasen S.H. (1985). Productivity improvement : the Quest for the Strategy. Proc of CAD/CAM Int Conf. Tucson, Arizona, pp 3–7 .Google Scholar
  9. 9.
    Laurent P.-J. (1972). Approximation & Optimisation. Hermann, Paris.Google Scholar
  10. 10.
    Rockafellar R. (1972). Convex Analysis. Princeton.Google Scholar
  11. 11.
    Lagache J.-M. (1982). Abstract Convolution & Optimum Layout. Proc Euromech 164 , University of Siegen. Wissenschaftsverlag, Mannheim.pp 340–345 .Google Scholar
  12. 12.
    Lagache J.-M. (1983). Convolution & Géométrie Optímale. Proc of 3rd Int Conf on Num Methods in Engineering. Pluralis, Paris. pp 415–424.Google Scholar
  13. 13.
    Lagache J.-M. (1985). Minimum weight design of trusses and some other bodies. Proc of Int Conf on Nonlinear Mechanics, Shanghai. Science Press, Shanghai. pp 1239–1244 .Google Scholar
  14. 14.
    Lagache J.-M. (1986). Theory & Practice of Michell Frames. Proc of IASS Symposium on Membrane Structures & Space Frames, Osaka. Elsevier. pp 221–228 .Google Scholar
  15. 15.
    Lagache J.-M. (1981). Treillis de Volume Minimal dans une Region Donnée. J de Méc 20 (3) : 415–448 .Google Scholar
  16. 16.
    Lagache J.-M. (1980). A Geometrical Procedure To Design Trusses in a Given Area. Eng Opt 5 : 1–12 .CrossRefGoogle Scholar
  17. 17.
    Lagache J.-M. & Menet P. (1984). Michell To-Day. Proc Int Conf on Space Structures, Guildford. Elsevier, London. pp 700–705 .Google Scholar
  18. 18.
    Lagache J.-M., Menet P. & Kasharherou J. (1985). Michell Windmills. Proc of CAD/ CAM Int Conf. Tucson, Arizona. pp 301–306 .Google Scholar
  19. 19.
    Hill (1950). The Mathematical Theory of Plasticity. Oxford.Google Scholar
  20. 20.
    Piaget J. (1980). Les formes élémentaires de la dialectique. Gallimard, Paris.Google Scholar
  21. 21.
    Brebbia C.A. (1972). The Boundary Element Method for Engineers. Pentech Press, London.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • J.-M. Lagache
    • 1
  1. 1.PSA Etudes & RecherchesBagneuxFrance

Personalised recommendations