Sensorimotor Activity and Metabolic Factors in Vestibular Compensation

  • M. Lacour
  • L. Ez-Zaher
  • C. Xerri

Abstract

Dramatic impairments of postural, locomotor and oculomotor functions are shown following unilateral vestibular neurectomy or hemilabyrinthectomy in many species. Functional recovery develops with time, leading to a total or near complete compensation of the sensorimotor deficits. It is generally assumed that these disturbances are due to the strong imbalance between the spontaneous firing rate and the dynamic response properties of the vestibular nuclei neurons on both sides (Mc Cabe and Ryu 1969; Shimazu and Precht 1966; Precht 1974; Xerri et al. 1983; Lacour et al. 1985). During the time course of vestibular compensation, symmetrical resting rates are observed and the dynamic neuronal characteristics of the deafferented vestibular cells are partially restored (Precht et al. 1966; Pompeiano et al. 1984; Ried et al. 1984). These neurophysiological data are closely correlated with the biochemical changes observed in many central nervous structures, including the deafferented vestibular nuclei. Modifications in the energy metabolism of vestibular nuclei located on the lesioned side were shown in the rat (Llinas and Walton 1979) and in the frog (Flohr et al. 1981). By using the deoxyglucose method and by comparing the distribution of radioactivity in uncompensated and compensated animals, these authors pointed to an increase of the glucose uptake within the deafferented vestibular nuclei during the chronic stage of compensation. Assuming that metabolic activity measured as glucose uptake closely parallels functionally significant activity (Sokoloff 1977), this method provides also a good index of activity in the central nervous system.

Keywords

Permeability Toxicity Agate Cage Rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byrne JH (1987) Cellular analysis of associative learning. Physiol Rev 67: 329–439PubMedGoogle Scholar
  2. Chatterjee SS, Trunzler G (1981) Neue Ergebnisse aus der Ginkgo Forschung. Arztez Naturheilverf 22: 593–604Google Scholar
  3. Etienne A, Hecquet F, Clostre F, Defeudis FV (1982) Comparaison des effets d’un extrait de Ginkgo biloba et de la chlorpromazine sur la fragilité osmotique, in vitro, d’érithrocytes de rat. J Pharmacol 13: 291–298PubMedGoogle Scholar
  4. Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172Google Scholar
  5. Igarashi M, Alford BR, Kato Y, Levy JK (1975) Effect of physical exercise upon nystagmus and locomotor dysequilibrium after labyrinthectomy in experimental primates. Acta Oto-Laryngol 79: 214–220CrossRefGoogle Scholar
  6. Igarashi M, Levy JK, O-Uchi T, Reschke MF (1981) Further study of physical exercise and locomotor balance compensation after unilateral labyrinthectomy in squirrel monkeys. Acta Oto-Laryngol 92: 101–105CrossRefGoogle Scholar
  7. Karcher L, Zagerman P, Krieglstein J (1984) Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn-Schmiedebergs Arch Pharmacol 327: 31–35PubMedCrossRefGoogle Scholar
  8. Karcher L, Chatterjee SS, Gabard B, Krieglstein J (1985) Extract of Ginkgo biloba and triethyltin toxicity: biochemical studies in brain. Iupar 9th International Congress of PharmacologyGoogle Scholar
  9. Lacour M (1981) Contribution à l’étude de la restauration des fonctions posturo-cinétiques après labyrinthectomie chez le singe et le chat. Thèse Doctorat es-Sciences, Marseille, pp 152Google Scholar
  10. Lacour M (1984) Restauration fonctionnelle et réapprentissage: exemple de la compensation vestibuläre. In: Toupet M (ed) XVIIIth Symp Eng, Ipsen, pp 93 - 106Google Scholar
  11. Lacour M, Roll JP, Appaix M (1976) Modifications and development of spinal reflexes in the alert baboon (Papio papio) following an unilateral vestibular neurotomy. Brain Res 113: 255–269PubMedCrossRefGoogle Scholar
  12. Lacour M, Manzoni D, Pompeiano O, Xerri C (1985) Central compensation of vestibular deficits. III. Response characteristics of lateral vestibular neurons to roll tilt after contralateral labyrinth deafferentation. J Neurophysiol 54: 988–1005PubMedGoogle Scholar
  13. Llinas R, Walton K (1979) Vestibular compensation: a distributed property of the central nervous system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igashu-Shoin, Tokyo New York, pp 145–166Google Scholar
  14. Major RT (1967) The Ginkgo, the most ancient living tree. Science 157: 1270–1273PubMedCrossRefGoogle Scholar
  15. Mata M, Fink DJ, Gainer H et al. (1980) Activity-dependent energy metabolism in rat posterior pituitary reflects sodium pump activity. J Neurochem 34: 213–215PubMedCrossRefGoogle Scholar
  16. McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736PubMedCrossRefGoogle Scholar
  17. Otani M, Chatterjee SS, Gabard B, Kreutzberg GW (1986) Effect of an extract of Ginkgo biloba on triethyltin-induced cerebral edema. Acta Neuropathol 69: 54–65PubMedCrossRefGoogle Scholar
  18. Pompeiano O, Xerri C, Gianni S, Manzoni D (1984) Central compensation of vestibular deficits. II. Influence of roll tilt on different-size lateral vestibular neurons after ipsilateral labyrinth deafferentation. J Neurophysiol 52: 18–38PubMedGoogle Scholar
  19. Poncin-Lafitte MC le, Rapin J, Rapin JR (1980) Effects of Ginkgo-biloba on changes induced by quantitative cerebral microembolization in rats. Arch Int Pharmacodyn Ther 243: 236–244PubMedGoogle Scholar
  20. Precht W (1974) Characteristic of vestibular neurons after acute and chronic labyrinthine destruction. In: Kornhuber HH (ed) Vestibular system, Handbook of sensory physiology, vol VI. Springer, Berlin Heidelberg New York, pp 451–462Google Scholar
  21. Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010PubMedGoogle Scholar
  22. Precht W, Maioli C, Dieringer N, Cochran S (1981) Mechanisms of compensation of the vestibulo-ocular reflex after vestibular neurotomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 222–230Google Scholar
  23. Rapin JR, Poncin-Lafitte M le (1979) Modèle expérimental d’ischémie cérébrale. Action preventive de l’extrait de Ginkgo. Sémin Hòp (Paris) 55: 2047–2050Google Scholar
  24. Ried S, Maioli C, Precht W (1984) Vestibular nuclear neuron activity in chronically hemilaby-rinthectomized cats. Acta Oto-Laryngol 98: 1–13CrossRefGoogle Scholar
  25. Roland PE (1985) Cortical organization of voluntary behavior in man. Hum Neurobiol 4: 155–167PubMedGoogle Scholar
  26. Roland PE, Larsen B (1976) Focal increase of cerebral blood flow during stereognostic testing in man. Arch Neurol 33: 551–558PubMedGoogle Scholar
  27. Roland PE, Friberg L (1985) Localization of cortical areas activated by thinking. J Neurophysiol 53: 1219–1243PubMedGoogle Scholar
  28. Roland PE, Skinhoj E (1981) Extrastriate cortical areas activated during visual discrimination in man. Brain Res 222: 166–171PubMedCrossRefGoogle Scholar
  29. Roland PE, Larsen B, Lassen NA, Skinhoj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43: 118–136PubMedGoogle Scholar
  30. Sancessario G, Kreutzberg GW (1986) Stimulation of astrocytes affects cytotoxic brain edema. Acta Neuropathol 72: 3–14CrossRefGoogle Scholar
  31. Schaefer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea-pig. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 203–232Google Scholar
  32. Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492PubMedGoogle Scholar
  33. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29: 13–26PubMedCrossRefGoogle Scholar
  34. Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le chat. Ròle de l’activité sensorimotrice. Acta Oto-Laryngol 90: 414–424CrossRefGoogle Scholar
  35. Xerri C, Lacour M, Manzoni D, Pompeiano O (1983) Behavioral aspects and central neuronal events in vetibular compensation. In: Horn H (ed) Multimodal convergences in sensory system. Fischer, Stuttgart, pp 291–301Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Lacour
    • 1
  • L. Ez-Zaher
    • 1
  • C. Xerri
    • 1
  1. 1.Université Aix-Marseille I, Département de PsychophysiologieU.A.-C.N.R.S. N° 372, Centre de St. JérômeMarseille Cedex 13France

Personalised recommendations