Skip to main content

Central and Cerebellar Norepinephrine Depletion and Vestibulo-ocular Reflex (VOR) Adaptation

  • Conference paper
Post-Lesion Neural Plasticity

Abstract

Adaptation of the vestibulo-ocular reflex (VOR) presents an attractive model for investigating neural plasticity in the central nervous system because a great deal is known about the neural organization that is responsible for its operation. Modifications in the gain of the VOR can be brought about by a mismatch of visual and vestibular inputs. This can be accomplished by modifying vision with reversing prisms (Gonshor and Melvill Jones 1976), magnifying or reducing lenses (Miles and Fuller 1974; Demer and Robinson 1982), or by altering the normal visual environment in other ways to produce a conflict between the two senses (Ito et al. 1974; Maioli and Precht 1984). The result is an adjustment of the gain of the VOR that allows this reflex to continue to carry out its primary function, i.e., to maintain an image of visual interest on the fovea of the eye in the presence of head movements. This reflex has a well-established time course during which adaptation takes place. Modifications to the gain of the VOR occur within a relatively short period (1–2 h) and can be maintained over an extended period of time (days to weeks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow D, Freedman W (1980) Human cervico-ocular reflex in the adult. Acta Oto-Laryngol 89: 487–496

    Article  CAS  Google Scholar 

  • Bear MF, Singer W (1986) Modulation of visual cortical plasticity by acetylcholine and nor-adrenaline. Nature 320: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Bloom F, Hoffer BJ, Siggins GR (1971) Studies on norepinephrine containing afferents to Purkinje cells of a rat cerebellum. I. Localization of fibers and their synapses. Brain Res 25: 501–521

    Article  PubMed  CAS  Google Scholar 

  • Boyeson MG, Krobert KA, Hughes JM (1986) Norepinephrine infusions into the cerebellum facilitate recovery from sensori-motor cortex injury in the rat. Soc Neurosci Abst 12:#304. 13, 1120

    Google Scholar 

  • Crow TJ (1968) Cortical synapses and reinforcement: a hypothesis. Nature 219: 736–737

    Article  PubMed  CAS  Google Scholar 

  • Daw NW, Videen TO, Parkinson D, Rader K (1985a) DSP-4 depletes noradrenaline in kitten visual cortex without altering the effects of monocular deprivation J Neurosci 5: 1925–1933

    CAS  Google Scholar 

  • Daw NW, Videen TO, Rader RK, Robertson T, Coscia CJ (1985 b) Substantial reduction of noradrenalin in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation. Exp Brain Res 59: 30–35

    Google Scholar 

  • Demer JL, Robinson DA (1982) Effects of reversible lesions and stimulation of olivocerebellar system on vestibulo-ocular reflex plasticity. J Neurophysiol 47: 1084–1107

    PubMed  CAS  Google Scholar 

  • Ebner JT, Bloedel JR (1981) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol 45: 962–971

    PubMed  CAS  Google Scholar 

  • Ebner T, Qi-Xiang Y, Bloedel JR (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber input. J Neurophysiol 50: 205–219

    PubMed  CAS  Google Scholar 

  • Freedman R, Hoffer BJ, Woodward DJ, Puro DA (1977) A functional role for the adrenergic input to the cerebellar cortex: interaction of norepinephrine with activity evoked by mossy and climbing fibers. Exp Neurol 55: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Gilbert PFC (1975) How the cerebellum could memorize movements. Nature 254: 688–689

    Article  PubMed  CAS  Google Scholar 

  • Gonshor A, Melvill Jones G (1976) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol (Lond) 256: 381–384

    Google Scholar 

  • Gordon B, Moran J, Trombley P, Soyke J (1986) Visual behavior of monocularly deprived kittens treated with 6-hydroxydopamine. Brain Res 389: 21–29

    PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR, Oliver AP, Bloom FE (1973) Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence for central adrenergic inhibition. J Pharmacol Exp Ther 184: 553–569

    PubMed  CAS  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M, Jastreboff PJ, Miyashita Y (1979) Adaptive modification of the rabbit’s horizontal vestibulo-ocular reflex during sustained vestibular and optokinetic stimulation. Exp Brain Res 37: 17–30

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Miyashita Y (1975) The effects of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo-ocular reflex of rabbits. Proc Jpn Acad 51: 716–720

    Google Scholar 

  • Ito M, Shiiga T, Yagi N, Yamamoto M (1974) The cerebellar modification of rabbits’ horizontal vestibulo-ocular reflex induced by sustained head rotation combined with visual stimulation. Proc Jpn Acad 50: 85–89

    Google Scholar 

  • Jonsson G, Malmfors T, Sachs C (1972) Effects of drugs on the 6-hydroxydopamine induced degeneration of adrenergic nerves. Res Commun Chem Pathol Pharmacol 3: 543–556

    PubMed  CAS  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20: 535–553

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu T, Pettigrew JD (1976) Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194: 206–209

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu T, Shirokawa T (1985) Involvement of /i-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp Brain Res 59: 507–514

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Smith MJ (1983) Suppressed visual adaptation of the vestibulo-ocular reflex in catecholamine depleted cats. Brain Res 258: 323–327

    Article  PubMed  CAS  Google Scholar 

  • Kety SS (1970) The biogenic amines in the central nervous system: their possible roles in arousal, emotion, and learning. In: Schmidt FO (ed) The Neurosciences: Second Study Program. Rockefeller University Press, New York, pp 324–336

    Google Scholar 

  • Kobayashi RM, Palkovits M, Kopin IJ, Jacobowitz DM (1974) Biochemical mapping of the noradrenergic nerves arising from the rat locus coeruleus. Brain Res 77: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Maioli C, Precht W (1984) The horizontal optokinetic nystagmus in the cat. Exp Brain Res 55 (3): 494–506

    Article  PubMed  CAS  Google Scholar 

  • McElligott JG, Ebner TJ, Bloedel JR (1986) Reduction of cerebellar norepinephrine alters climbing fiber enhancement of mossy fiber input to the Purkinje cell. Brain Res 397: 245–252

    Article  PubMed  CAS  Google Scholar 

  • McElligott JG, Freedman W (1988) Vestibulo-ocular reflex adaptation in cats before and after depletion of norepinephrine. Exp Brain Res 69: 509–521

    Article  PubMed  CAS  Google Scholar 

  • McElligott JG, Loughnane M, Mays L (1979) The use of synchronous demodulation for the measurement of eye movements by means of an ocular magnetic search coil. IEEE Trans Biomed Eng 26: 370–374

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y, Watanabe E (1984) Loss of vision-guided adaptation of the vestibulo-ocular reflex after depletion of brain serotonin in the rabbit. Neurosci Lett 51: 177–182

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Fuller JH (1974) Adaptive plasticity of the vestibulo-ocular response of the rhesus monkey. Brain Res 80: 512–516

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Lisberger SA (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4: 273–299

    Article  PubMed  CAS  Google Scholar 

  • Moisés HC, Woodward DJ (1980) Potentiation of GABA inhibitory action in cerebellum by locus coeruleus stimulation. Brain Res 182: 327–344

    Article  PubMed  Google Scholar 

  • Moisés HC, Woodward DJ, Hoffer BJ, Freedman R (1979) Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp Neurol 64: 493–515

    Article  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of norepinephrine and epinephrine systems. Annu Res Neurosci 2: 113–168

    Article  CAS  Google Scholar 

  • Olson L, Fuxe K (1971) On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res 28: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of the vestibulocular reflex to the cerebellum. J Neurophysiol 39: 954–969

    PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Bloom FE (1971) Studies on norepinephrine containing afferents to Purkinje cells of rat cerebellum: III. Evidence for mediation of norepinephrine effect by cyclic 3’,5’-adenosine monophosphate. Brain Res 25: 535–553

    Article  PubMed  CAS  Google Scholar 

  • Trombley P, Allen EE, Soyke J, Blaha CD, Lane RF, Gordon B (1986) Doses of 6-hydroxydopamine sufficient to deplete norepinephrine are not sufficient to decrease plasticity in the visual cortex. J Neurosci 6: 266–273

    PubMed  CAS  Google Scholar 

  • Watanabe E (1984) Neuronal events correlated with long term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res 297: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Watson M, McElligott JG (1983) Six-hydroxydopamine and the acquisition and performance of specific locomotor tasks in rats. Pharmacol Biochem Behav 18: 927–934

    Article  PubMed  CAS  Google Scholar 

  • Watson M, McElligott JG (1984) Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res 296: 129–138

    Article  PubMed  CAS  Google Scholar 

  • Woodward DJ, Moisés HC, Waterhouse BD, Hoffer BJ, Freedman R (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38: 2109–2116

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McElligott, J.G., Freedman, W. (1988). Central and Cerebellar Norepinephrine Depletion and Vestibulo-ocular Reflex (VOR) Adaptation. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics