Skip to main content

Sprouting Pattern and B-50 Phosphorylation in Regenerating Sciatic Nerve Respond to ACTH Peptides

  • Conference paper
  • 87 Accesses

Abstract

Nerve sprouting in regeneration occurs as a restorative process following nerve crush or section. During regeneration, the administration of ACTH or ACTH peptide fragments such as αMSH (ACTH 1–13), ACTH 4–10, or an analogue of ACTH 4–9 (Org. 2766), stimulates the formation of nerve sprouts. The accelerated return of motor and sensory function following treatment with ACTH peptides (Strand and Kung 1980; Bijlsma et al. 1983) is due to an earlier initiation of sprouting following crush denervation (Verhaagen et al. 1986 a). Reinnervated motor units formed under the influence of early peptide treatment are considerably smaller, thus permitting finer motor control, than in saline-treated animals (Saint-Come and Strand 1985, 1987). This suggests an organizational role for these peptides on the pattern by which regenerating axons reinnervate skeletal muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker GR, Frischer R, Strand FL (1984) ACTH peptide neuromodulation in the developing neuromuscular system as seen through three different perspectives. Ann NY Acad Sci 435: 370–375

    Article  CAS  Google Scholar 

  • Bijlsma WA, Schotman P, Jenekens FGI, Gispen WH, Wied D de (1983) The enhanced recovery of sensorimotor function in rats is related to the melanotropic moiety of ACTH/MSH neuropeptides. Eur J Pharmacol 9: 231–236

    Article  Google Scholar 

  • Brown MC (1984) Sprouting of motor nerves in adult muscle: a recapitulation of ontogeny. TINS 7 (1): 10–14

    Google Scholar 

  • Edwards PM, Zee CEEM van der, Verhaagen J, Schotman P, Jennekens FGI, Gispen WH (1984) Evidence that the neurotrophic actions of α-MSH may derive from its ability to mimick the actions of a peptide formed in degenerating nerve stumps. J Neurol Sci 64: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Frischer RE, El-Kawa N, Strand FL (1985) ACTH peptides as organizers of neuronal patterns in development: maturation of the rat neuromuscular junction as seen by scanning electron microscopy. Peptides 6 (2): 13–19

    Article  PubMed  CAS  Google Scholar 

  • Frischer RE, Strand FL (1988) ACTH peptides stimulate motor nerve sprouting in development. Exp Neurol 100: 531–541

    Article  PubMed  CAS  Google Scholar 

  • Garrison JC (1983) Measurement of hormone-stimulated protein phosphorylation in intact cells. Methods in enzymology 99: 22–36

    Article  Google Scholar 

  • Gispen WH, Zwiers H, Wiegant VM, Schotman P, Wilson JE (1979) The behaviorally active neuropeptide ACTH as neurohormone and neuromodulator: the role of cyclic nucleotides and membrane phosphoproteins. Adv Exp Med Biol 116: 119–224

    Google Scholar 

  • Gispen WH, Zwiers H, Wiegant VM, Schotmann P, Wilson JE (1985) The role of phosphoprotein B-50 in phosphoinositide metabolism in brain synaptic plasma membranes. In: Bleasdale JE, Hasuer G, Eichberg J (eds) Inositol and phosphoinositides. Human, New Jersey, pp 399–413

    Chapter  Google Scholar 

  • Graan PNE de, Oestreicher AB, Schrama LH, Gispen WH (1986) Phosphoprotein B-50: localization and function. In: Gispen WH, Routtenberg A (eds) Progress in brain research, vol 69. Elsevier Science, Amsterdam, pp 37–50

    Google Scholar 

  • Hoch DB, Wilson JE, Dingledine RJ (1984) Factors affecting the phosphorylation of a 41,000 Dalton protein in hippocampal subcellular fractions. Brain Res 302: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RD, Virag I, Skene JHP (1986) A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci 5: 1843–1855

    Google Scholar 

  • Koning P de, Gispen WH (1987) Org 2766 improves functional and electrophysiological aspects of regenerating sciatic nerve in the rat. Peptides 8: 415–422

    Article  PubMed  Google Scholar 

  • Koning P de, Brakee JH, Gispen WH (1986) Methods for producing a reproducible crush in the sciatic nerve of the rat and the rapid and precise testing of return of sensory function: beneficial effects of melanocortins. J Neurol Sci 74: 237–246

    Article  PubMed  Google Scholar 

  • Marotta CA, Harris JL, Gilbert JM (1978) Characterization of multiple forms of brain tubulin subunits. J Neurochem 30: 1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Medinaceli LW de, Freed J, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77: 634–643

    Article  PubMed  Google Scholar 

  • Nelson RB, Routtenberg A (1985) Characterization of protein F1 (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity. Exp Neurol 89: 213–224

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RJ, Fischbach GD (1986) Isolation of embryonic chick motoneurons and their survival in vitro. J Neurosci 6: 3265 - 3274

    PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  • Paulson JR (1980) Sulfhydryl reagents prevent dephosphorylation and proteolysis of histones in isolated HeLa metaphase chromosomes. Eur J Biochem 111: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Ramagli LS, Rodriquez LV (1985) Quantitation of microgram amounts of protein in two-dimensional Polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6: 559–563

    Article  CAS  Google Scholar 

  • Rimpilainen MA, Righetti PG (1985) Membrane protein analysis by isoelectric focusing in immobilized pH gradients. Electrophoresis 6: 419–422

    Article  CAS  Google Scholar 

  • Rose KJ, Strand FL (1987) Response of the developing neuromuscular system of the rat to nicotine and the neurotropic peptide fragment ACTH/MSH 4–10. Ann NY Acad Sci 494: 319–322

    Article  Google Scholar 

  • Rose KJ, Strand FL (1988) Mammalian neuromuscular development accelerated with early but slowed with late gestational administration of ACTH peptide. Synapse 2: 200 - 204

    Article  PubMed  CAS  Google Scholar 

  • Rose KJ, Frischer RE, King JA, Strand FL (1988) Neonatal neuromuscular parameters vary in susceptibility to postnatal ACTH 4-10 administration. Peptides 9: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Saint-Come C, Strand FL (1985) ACTH 4-10 improves motor unit performance during peripheral nerve regeneration. Peptides 6 (1): 77–83

    Article  PubMed  CAS  Google Scholar 

  • Saint-Come C, Strand FL (1987) ACTH 4-9 analog (Org. 2766) improves qualitative and quantitative aspects of nerve regeneration. Peptides 9 SI (1): 215–221

    Google Scholar 

  • Saint-Come C, Acker GR, Strand FL (1982) Peptide influences on the development and regeneration of motor performance. Peptides 3: 439–499

    Article  PubMed  CAS  Google Scholar 

  • Saint-Come C, Acker GR, Strand FL (1985) Development and regeneration of motor systems under the influence of ACTH peptides. Psychoneuroendo 10: 445–459

    Article  CAS  Google Scholar 

  • Sanes JR (1987) Cell lineage and the origin of muscle fiber types. TINS 10 (6): 219–221

    Google Scholar 

  • Skene JHP, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233: 783–785

    Article  PubMed  CAS  Google Scholar 

  • Strand FL, Kung T (1980) ACTH accelerates recovery of neuromuscular function following crushing of peripheral nerve. Peptides 1: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Strand FL, Smith CM (1986) LPH, ACTH, MSH and motor systems. Neuropeptides and behavior, vol 1. In: Wied D de, Gispen WH, Wimersma Greidanus TjB van (eds) CNS effects of ACTH, MSH and opioid peptides. Pergamon, New York, pp 245–271

    Google Scholar 

  • Strand FL, Cayer AM, Gonzalez E, Stoboy H (1976) Peptide enhancement of neuromuscular function: animal and clinical studies. Pharmacol Biochem Behav 5: 179–187

    Article  PubMed  CAS  Google Scholar 

  • Verhaagen J, Edwards PM, Jenekens FGI, Schotman P, Gispen WH (1986 a) a-Melanocyte-stimulating hormone stimulates the outgrowth of myelinated nerve fibers after peripheral nerve crush. Exp Neurol 92: 451–454

    Google Scholar 

  • Verhaagen J, Hooff COM van, Edwards PE et al. (1986 b) The kinase C substrate protein B-50 and axonal regeneration. Brain Res Bull 17: 734–741

    Google Scholar 

  • Zwiers H, Veldhuis D, Schotman P, Gispen WH (1976) ACTH, cyclic nucleotides and brain protein phosphorylation in vitro. J Neurochem Res 1: 669–677

    Article  Google Scholar 

  • Zwiers H, Schotman P, Gispen WH (1980) Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J Neurochem 34: 1689–1699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strand, F.L., Zuccarelli, L.A., Kirschenbaum, B., Frischer, R.E. (1988). Sprouting Pattern and B-50 Phosphorylation in Regenerating Sciatic Nerve Respond to ACTH Peptides. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics