Skip to main content

Plastic, Adaptive Changes in the Vestibuloocular Reflex and Their Role in Recovery from Labyrinthine Lesions

  • Conference paper
Post-Lesion Neural Plasticity
  • 90 Accesses

Abstract

In order to maintain gaze stability in the face of perturbations that disturb head position, the brain must generate movements of the eyes in the head that compensate for movement of the head in space. Three sensorimotor mechanisms can contribute to these compensatory eye movements: the vestibuloocular reflex (VOR), the cervicoocular reflex (COR) and visually guided eye movements produced by the smooth pursuit (SP) and optokinetic (OK) systems. The dynamic and spatial properties of these four systems in normal subjects have been extensively studied (cf. Cohen et al. 1977, 1981; Lisberger et al. 1981; Peterson 1988; Robinson 1980, 1982). These studies form the basis for understanding the sensorimotor rearrangements that occur during recovery from labyrinthine lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baarsma EA, Collewijn H (1974) Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit. J Physiol (Lond) 238: 603–625

    CAS  Google Scholar 

  • Baker J, Harrison REW, Isu N, Wickland C, Peterson B (1986) Dynamics of adaptive change in vestibulo-ocular reflex direction. II. Sagittal plane rotations. Brain Res 371: 166–170

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Wickland C, Peterson B (1987) Dependence of cat vestibulo-ocular reflex direction adaptation on animal orientation during adaptation and rotation in darkness. Brain Res 408: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Baker JF, Perlmutter SI, Peterson BW, Rude SA, Robinson FR (1988) Simultaneous opposing adaptative changes in cat vestibulo-ocular reflex direction for two body orientations. Brain Res (in press)

    Google Scholar 

  • Barmack NH, Nastos MA, Pettorossi VE (1981) The horizontal and vertical cervico-ocular reflexes of the rabbit. Brain Res 224: 261–278

    Article  PubMed  CAS  Google Scholar 

  • Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Oto-Laryngol 81: 365–375

    CAS  Google Scholar 

  • Berthoz A, Melvill-Jones G, Begue AE (1981) Differential visual adaptation of vertical canal-dependent vestibulo-ocular reflexes. Exp Brain Res 44: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270: 321–344

    CAS  Google Scholar 

  • Cohen B, Henn V, Raphan T, Dennett D (1981) Velocity storage, nystagmus and visual-vestibular interactions in humans. Ann NY Acad Sci 374: 421–433

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, Martins AJ, Steinmann RM (1983) Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. J Physiol (Lond) 340: 259–286

    CAS  Google Scholar 

  • Gonshor A, Melvill Jones G (1976 a) Short-term adaptive changes in the human vestibulo-ocular reflex arc. J Physiol (Lond) 256: 361–379

    Google Scholar 

  • Gonshor A, Melvill Jones G (1976 b) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol (Lond) 256: 381–414

    Google Scholar 

  • Harrison REW, Baker JF, Isu N, Wickland CR, Peterson BW (1986) Dynamics of adaptive change in vestibulo-ocular reflex direction. I. Rotations in the horizontal plane. Brain Res 371: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Hart CW, McKinley PA, Peterson BW (1987) Compensation following acute unilateral total loss of periphreal vestibular function. In: Graham M (ed) The vestibular system (in press)

    Google Scholar 

  • Keller EL (1978) Gain of the vestibulo-ocular reflex in monkey at high rotational frequencies. Vision Res 18: 311–315

    Article  PubMed  CAS  Google Scholar 

  • Lisberger SG, Evinger C, Johanson GW, Fuchs AF (1981) Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J Neurophysiol 46: 229–249

    PubMed  CAS  Google Scholar 

  • Maioli C, Precht W (1985) On the role of vestibulo-ocular reflex plasticity in recovery after uni-lateral peripheral vestibular lesions. Exp Brain Res 59: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Maioli C, Precht W, Reid S (1983) Short and long-term modification of vestibuloocular response dynamics following unilateral vestibular nerve lesions in the cat. Exp Brain Res 50: 259–274

    Article  PubMed  CAS  Google Scholar 

  • McKinley PA, Peterson BW (1985) Voluntary modulation of the vestibuloocular reflex in humans and its relation to smooth pursuit. Exp Brain Res 60: 454–464

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Eighmy BB (1980) Long-term adaptive changes in the primate vestibuloocular reflex. I. Behavioral observations. J Neurophysiol 43: 1406–1425

    PubMed  CAS  Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interaction with visual following mechanisms in the Squirrel monkey. II. Response characteristics and plasiticity following unilateral inactivation of horizontal canal. J Neurophysiol 49: 152–168

    PubMed  CAS  Google Scholar 

  • Peterson BW (1988) Cervico-collic and cervico-ocular reflexes. In: Peterson BW, Richmond FJ (eds) Control of head movement. Oxford Univ Press (in press)

    Google Scholar 

  • Precht W, Maioli C, Dieringer N, Cochran S (1981) Mechanisms of compensation of the vestibulo-ocular reflex after vestibular neurotomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 221–230

    Google Scholar 

  • Pulaski PD, Zee DS, Robinson DA (1981) The behavior of the vestibulo-ocular reflex at high velocities of head rotation. Brain Res 222: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of the vestibuloocular reflex by the cerebellum. J Neurophysiol 39: 953–969

    Google Scholar 

  • Robinson DA (1980) Control of eye movements. In: Brooks VB (ed) Handbook of physiology, the nervous system, III. Motor Control, pp 1275–1320

    Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46: 43–57

    Article  Google Scholar 

  • Sahyouni XN, Matsuo V, Peterson BW (1987) Ocular pursuit during yaw rotation in humans. Soc Neurosci Abstr 13: 171

    Google Scholar 

  • Schaefer K-P, Meyer DL (1981) Aspects of vestibular compensation in guinea pigs. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 197–207

    Google Scholar 

  • Schultheis LW, Robinson DA (1981) Directional plasticity of the vestibulo-ocular reflex in the cat. Ann NY Acad Sci 374: 504–512

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peterson, B.W., Baker, J.F., Matsuo, V., Rude, S.A., Sahyouni, X.N. (1988). Plastic, Adaptive Changes in the Vestibuloocular Reflex and Their Role in Recovery from Labyrinthine Lesions. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics