Skip to main content

Models, Mechanisms and Kinetics of Neuromuscular Synapse Elimination in Reinnervated Adult Skeletal Muscle

  • Conference paper
Post-Lesion Neural Plasticity

Introductory Overview

The elimination of polyneuronal innervation of muscle fibres in immature skeletal muscle is well documented (see review by Bennett 1983). The main purpose of this chapter is to address briefly the issue of polyneuronal innervation and its elimination in reinnervated adult muscle, especially following injury to part of its nerve supply. The repair of connections in partially denervated muscle sometimes occurs with only limited success. This topic is therefore germane to the failure of reorganization of neuronal convergence and divergence in the injured central nervous system, because it is more comparable than, say, reinnervation of completely denervated muscle, which is usually completely successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attwell D, Iles J (1979) Synaptic transmission: ion concentrations in the synaptic cleft. Proc R Soc Lond B Biol Sci 206: 115–131

    Article  PubMed  CAS  Google Scholar 

  • Bear M, Cooper L, Ebner F (1987) A physiological theory for synapse modification. Science 237: 42–48

    Article  PubMed  CAS  Google Scholar 

  • Bennett M (1983) Development of neuromuscular synapses. Physiol Rev 63: 915–1048

    PubMed  CAS  Google Scholar 

  • Betz W, Caldwell J, Ribchester R (1979) The size of motor units during postnatal development of rat lumbrical muscle. J Physiol 297: 463–478

    PubMed  CAS  Google Scholar 

  • Betz W, Caldwell J, Ribchester R (1980a) The effects of partial denervation at birth on the development of muscle fibres and motor units in rat lumbrical muscle. J Physiol 303: 265–279

    CAS  Google Scholar 

  • Betz W, Caldwell J, Ribchester R (1980b) Sprouting of active nerve terminals in partially inactive muscles of the rat. J Physiol 303: 281–297

    CAS  Google Scholar 

  • Bixby J, Essen D Van (1978) Competition between foreign and original nerves in adult mammalian skeletal muscle. Nature 282: 726–728

    Article  Google Scholar 

  • Boeke J (1916) Studien zur Nervenregeneration. I. Die Regeneration der motorischen Nerven-elemente und die Regeneration der Nerven der Muskelspindeln. Verh K Acad Wet Amst 18 (6): 1–120

    Google Scholar 

  • Boeke J (1921) The innervation of striped muscle fibres and Langley’s receptive substance. Brain 44: 1–22

    Article  Google Scholar 

  • Brown M, Ironton R (1978) Sprouting and regression of neuromuscular synapses in partially denervated mammalian muscles. J Physiol 278: 325–348

    PubMed  CAS  Google Scholar 

  • Brown M, Jansen J, Van Essen D (1976) Polyneuronal innervation of skeletal muscle in newborn rats and its elimination during maturation. J Physiol 261: 387–422

    PubMed  CAS  Google Scholar 

  • Brown M, Hopkins W, Keynes R (1982) Short and long term effects of paralysis on the motor innervation of two different neonatal mouse muscles. J Physiol 329: 439–450

    PubMed  CAS  Google Scholar 

  • Brunetti O, Magni F, Pazzaglia U (1985) Neural nature of the time dependent factors involved in motor reinnervation. Exp Neurol 90: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Callaway E, Soha J, Van Essen D (1987) Competiton favouring inactive over active motor neurones during synapse elimination. Nature 328: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Campenot R (1986) Retraction and degeneration of sympathetic neurites in response to locally elevated potassium. Brain Res 399: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Dawes E (1972) Quantitative problems in biochemistry, 5th edn. Livingstone, London, pp 163–165

    Google Scholar 

  • Dohrmann U, Edgar D, Sendtner M, Thoenen H (1986) Muscle-derived factors that support survival and promote fiber outgrowth from embryonic chick spinal motor neurons in culture. Dev Biol 118: 209–221

    Article  PubMed  CAS  Google Scholar 

  • Duchen L, Tonge D (1977) The effects of implantation of an extra nerve on axonal sprouting usually induced by botulinum toxin in skeletal muscle of the mouse. J Anat 124: 205–216

    PubMed  CAS  Google Scholar 

  • Fishman M, Nelson P (1981) Depolarization-induced synaptic plasticity at cholinergic synapses in tissue culture. J Neurosci 1: 1043–1051

    PubMed  CAS  Google Scholar 

  • Frank E, Jansen J, Lomo T, Westgaard R (1975) The interaction between foreign and original motor nerves innervating the soleus muscle of rats. J Physiol 247: 725–743

    PubMed  CAS  Google Scholar 

  • Fuchs P, Nicholls J, Ready D (1981) Membrane properties and selective connexions of identified leech neurones in culture. J Physiol 316: 203–223

    PubMed  CAS  Google Scholar 

  • Gouzé JL, Lasry JM, Changeux JP (1983) Selective stabilization of muscle innervation during development: a mathematical model. Biol Cybern 46: 207–215

    Article  PubMed  Google Scholar 

  • Gurney M, Appattoff B, Heinrich S (1986) Suppression of terminal axonal sprouting at the neuromuscular junction by monoclonal antibodies against a muscle-derived antigen of 56000 daltons. J Cell Biol 102: 2264–2272

    Article  PubMed  CAS  Google Scholar 

  • Guth L (1962) Neuromuscular function after regeneration of interrupted nerve fibres into partially denervated muscle. Exp Neurol 6: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Henderson C, Huchet M, Changeux JP (1984) Neurite promoting activities for embryonic spinal neurons and their developmental changes in the chick. Dev Biol 104: 336–347

    Article  PubMed  CAS  Google Scholar 

  • Henderson C, Benoit P, Huchet M, Guenet JG, Changeux JP (1986) Increase of neurite promoting activity for spinals neurons in muscles of paralysé mice and tenotomized rats. Dev Brain Res 25: 65–70

    Article  CAS  Google Scholar 

  • Hille B (1984) Ionic channels in excitable membranes. Sinauer, Sunderland, pp 45–53

    Google Scholar 

  • Hoffmann H (1951) Fate of interrupted nerve fibres regenerating into partially denervated muscle. Aust J Expl Med Sci 29: 211–219

    Article  Google Scholar 

  • Jansen J, Lomo T, Nicolaysen K, Westgaard R (1973) Hyperinnervation of skeletal muscle fibres: dependence on muscle activity. Science 181: 559–561

    Article  PubMed  CAS  Google Scholar 

  • Kapfhammer J, Raper J (1987) Collapse of growth cone structure on contact with specific neurites in culture. J Neurosci 7: 201–212

    PubMed  CAS  Google Scholar 

  • Lichtman J, Magrani L, Purves D (1987) Visualization of neuromuscular junctions over periods of several months in living animals. J Neurosci 7: 1215–1222

    PubMed  CAS  Google Scholar 

  • Magchielse T, Meeter E (1986) The effect of neuronal activity on the competitive elimination of neuromuscular junctions in tissue culture. Dev Brain Res 25: 211–220

    Article  Google Scholar 

  • McArdle J (1975) Complex end-plate potentials at the regenerating neuromuscular junction of the rat. Exp Neurol 49: 629–638

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Norris F (1970) Motor fibers in the rat sural nerve. Exp Neurol 26: 433–435

    Article  PubMed  CAS  Google Scholar 

  • Nelson P, Brenneman D (1982) Electrical activity of neurons and development of the brain. Trends Neurosci 5: 229–232

    Article  Google Scholar 

  • Nowak L, Bregeskovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gating of glutamate-activated channels in mouse central neurons. Nature 307: 462–465

    Article  PubMed  CAS  Google Scholar 

  • O’Brien R, Fischbach G (1986) Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro. J Neurosci 6: 3284–3289

    PubMed  Google Scholar 

  • O’Brien R, Ostberg A, Vrbovà G (1978) Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. J Physiol 282: 571–582

    PubMed  Google Scholar 

  • O’Brien R, Ostberg A, Vrbovà G (1984) Protease inhibitors reduce the loss of nerve terminals induced by activity and calcium in developing rat soleus muscle. Neuroscience 12: 637–646

    Article  PubMed  Google Scholar 

  • Peyronnard JM, Charron L (1982) Motor and sensory neurones of the rat sural nerve: a horse-radish peroxidase study. Muscle Nerve 5: 654–660

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtman J (1985) Principles of neural development. Sinauer, Sunderland, pp 295–361

    Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Prss, Oxford, p 279

    Google Scholar 

  • Ribchester R (1984) Non-selective elimination of motor nerve terminals after reinnervation of partially denervated rat lumbrical muscles. J Physiol 346: 25 P

    Google Scholar 

  • Ribchester R (1986) Neural activity and the reorganization of motor units in reinnervated skeletal muscle. In: Nix W, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York, pp 53–63

    Chapter  Google Scholar 

  • Ribchester RR (1988) Activity dependent and independent synaptic interactions during reinnervation of partially denervated rat muscle. J Physiol 401: 53–75

    PubMed  CAS  Google Scholar 

  • Ribchester R, Taxt T (1983) Motor unit size and synaptic competition in rat lumbrical muscles reinnervated by active and inactive motor axons. J Physiol 344: 89–111

    PubMed  CAS  Google Scholar 

  • Smallheiser N, Crain S (1984) The possible role of “sibling neurite bias” in the co-ordination of neurite extension, branching and survival. J Neurobiol 15: 517–529

    Article  Google Scholar 

  • Taxt T (1983) Local and systemic effects of tetrodotoxin on the formation and elimination of synapses in reinnervated adult rat muscle. J Physiol 340: 175–194

    PubMed  CAS  Google Scholar 

  • Thompson W (1978) Reinnervation of partially denervated rat soleus muscle. Acta Physiol Scand 103: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Vrbova G Lowrie MB, Evers J (1988) Reorganization of synaptic inputs to developing skeletal muscle fibres. In: Plasticity of the neuromuscular system. Ciba Foundation Symposium No. 138 (in press)

    Google Scholar 

  • Willshaw D (1981) The establishment and subsequent elimination of polyneuronal innervation of developing muscle: theoretical considerations. Proc R Soc Lond Biol Sci 212: 233–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ribchester, R.R. (1988). Models, Mechanisms and Kinetics of Neuromuscular Synapse Elimination in Reinnervated Adult Skeletal Muscle. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics