Advertisement

PET pp 30-67 | Cite as

Modelle zur Quantifizierung von PET-Messungen

  • Klaus Wienhard
  • Rainer Wagner
  • Wolf-Dieter Heiss

Zusammenfassung

PET ermöglicht, quantitativ radioaktiv markierte Moleküle im lebenden Organismus von außen zu verfolgen. Um aus den gemessenen Aktivitätsverteilungen und ihrem zeitlichen Verlauf die interessierenden Größen wie z. B. regionale Durchblutung, Stoffwechselrate oder Rezeptordichte zu extrahieren, ist es im allgemeinen notwendig, die komplizierten physiologischen und biochemischen Vorgänge modellmäßig so zu vereinfachen, daß sie durch einfache, lösbare mathematische Gleichungen beschrieben werden können. Dabei darf das Modell nur so viele unbekannte Parameter haben, wie durch die Meßdaten und eventuell zusätzlich vorliegende Information eindeutig bestimmt werden können. Dies ist zwar trivial und selbstverständlich, hat jedoch die Konsequenz, daß es nur sehr wenige praktisch anwendbare Modelle in der PET gibt, die hinreichend validiert werden konnten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alpert NM, Eriksson L, Chang JY, Bergström M, Litton JE, Correia JA, Bohm C, Ackerman RH, Taveras JM (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 4: 28–34PubMedCrossRefGoogle Scholar
  2. Alpert NM, Eriksson L, Chang JY, Bergström M, Litton JE, Correia JA, Bohm C, Ackerman RH, Taveras JM (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 4: 28–34PubMedCrossRefGoogle Scholar
  3. Blomqvist G, Bergström K, Bergström M, Ehrin E, Eriksson L, Garmelius B, Lindberg B, Lilja A, Litton JE, Lundmark L, Lundqvist H, Malmborg P, Moström U, Nilsson L, Stone-Elander S, Widén L (1985) Models for 71C-glucose. In: Greitz T, Ingvar DH, Widén L (eds) The Metabolism of the Human Brain Studied with Positron Emission Tomography. Raven, New York, pp 185–194Google Scholar
  4. Bustany P, Henry JF, Sargent T, Zarifian E, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: in vivo studies with 11C-L-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron Emission Tomography of the Brain. Springer, Berlin Heidelberg New York, pp 208–211Google Scholar
  5. Buxton RB, Wechsler LR, Alpert NM, Ackerman RH, Elmaleh DR, Correia JA (1984) Measurement of brain pH using “CO, and positron emission tomography. J Cereb Blood Flow Metab 4: 8–16PubMedCrossRefGoogle Scholar
  6. Coenen HH, Wienhard K, Stöcklin G, Laufer P, Hebold I, Pawlik G, Heiss WD (1988) PET measurement of D2 and S2 receptor binding of 3-N-([2’-18F]Fluoroethyl) spiperone in baboon brain. Eur J Nucl Med 14: 80–87PubMedCrossRefGoogle Scholar
  7. Crone C (1964) Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58: 292–305CrossRefGoogle Scholar
  8. Farde L, Hakan H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2-dopamine receptor binding in the living human brain by PET. Science 231: 258–261PubMedCrossRefGoogle Scholar
  9. Farde L, Wiesel FA, Hall H, Halldin Ch, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 671–672PubMedGoogle Scholar
  10. Feinendegen LE, Herzog H, Wieler H, Patton DD, Schmid A (1986) Glucose transport and utilization in the human brain: model using carbon-11 methylglucose and positron emission tomography. J Nucl Med 27: 1867–1877PubMedGoogle Scholar
  11. Garnett ES, Nahmias C, Firnau G (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neurol Sci 11: 174–179PubMedGoogle Scholar
  12. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. J Cereb Blood Flow Metab 5: 163–178PubMedCrossRefGoogle Scholar
  13. Heyman MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20: 55–79CrossRefGoogle Scholar
  14. Holden JE, Gatley SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RI, Polcyn RE (1981) Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 22: 1084–1088PubMedGoogle Scholar
  15. Huang SC, Barrio JR, Phelps ME (1986) Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 6: 515–521PubMedCrossRefGoogle Scholar
  16. Huang SC, Carsson RE, Phelps ME (1982) Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique. J Cereb Blood Flow Metab 2: 99–108PubMedCrossRefGoogle Scholar
  17. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49: 339–343PubMedCrossRefGoogle Scholar
  18. Koeppe RA, Holden JE, Polcyn RE, Nickles RI, Hutchins GD, Weese JL (1985) Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validation. J Cereb Blood Flow Metab 5: 214–223PubMedCrossRefGoogle Scholar
  19. Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984) Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med 25: 177–187PubMedGoogle Scholar
  20. Patlak C, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590PubMedCrossRefGoogle Scholar
  21. Patlak C, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7PubMedCrossRefGoogle Scholar
  22. Perlmutter JS, Larson KB, Raichle ME, Markham J, Mintun MA, Kilbourn MR, Welch MJ (1986) Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab 6: 154–169PubMedCrossRefGoogle Scholar
  23. Phelps ME, Barrio JR, Huang SC, Keen RE, Chugani H, Mazziotta JC (1984) Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann Neurol 15 (suppl) S192–S202PubMedCrossRefGoogle Scholar
  24. Phelps ME, Huang SC, Hoffman EJ, Kuhl DE (1979a) Validation of tomographic measurement of cerebral blood volume with C-11 labeled carboxyhemoglobin. J Nucl Med 20: 328–334Google Scholar
  25. Phelps ME, Huang SC, Hoffman EJ, Selin C, Kuhl DE (1981) Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability - surface area product. Stroke 12: 607–619PubMedCrossRefGoogle Scholar
  26. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979b) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-Dglucose: Validation of method. Ann Neurol 6: 371–388CrossRefGoogle Scholar
  27. Raichle ME, Grubb RL, Higgins SC (1979) Measurement of brain tissue carbon dioxide content in vivo by emission tomography. Brain Res 166: 413–417PubMedCrossRefGoogle Scholar
  28. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H,15O. II. Implementation and validation. J Nucl Med 24: 790–798PubMedGoogle Scholar
  29. Reivich M, Alavi A, Wolf A (1982) Use of 2-deoxy-D-(1–11C)-glucose for the determination of local cerebral glucose metabolism in humans: Variation within and between subjects. J Cereb Blood Flow Metab 2: 307–319PubMedCrossRefGoogle Scholar
  30. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197: 1205–1210PubMedGoogle Scholar
  31. Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of regional extravascular lung density using positron emission and transmission tomography. J Comput Assist Tomogr 5: 783–791PubMedCrossRefGoogle Scholar
  32. Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L, Bigner DD (1984) In vivo measurement of regional brain tissue pH using positron emission tomography. Ann Neurol 15 (suppl): S98–S102PubMedCrossRefGoogle Scholar
  33. Schober O, Meyer GJ (1987) Lung edema: clinical efficacy of positron emission tomography. In: Heiss WD, Pawlik G, Herholz K, Wienhard K (eds) Clinical Efficacy of Positron Emission Tomography. Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, pp 315–328Google Scholar
  34. Schön HR, Schelbert HR, Najafi A, Robinson G, Huang SC, Barrio J, Phelps ME (1982) C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography: I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 103: 532–547PubMedCrossRefGoogle Scholar
  35. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  36. Syrota A, Castaing M, Rougemont D, Berridge M, Maziere B, Baron JC, Bousser MG, Pocidalo JJ (1985) Regional tissue pH and oxygen metabolism in human cerebral infarction studied with positron emission tomography. In: Greitz T, Ingvar DH, Widén L (eds) The Metabolism of the Human Brain Studied with Positron Emission Tomography. Raven, New York, pp 285–303Google Scholar
  37. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-fluoro-2-deoxy-D-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5: 115–125PubMedCrossRefGoogle Scholar
  38. Wong DF, Gjedde A, Wagner HN Jr, Dannals RF, Douglass KH, Links JM, Kuhar MJ (1986a) Quantification of neuroreceptors in the living human brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 6: 147–153CrossRefGoogle Scholar
  39. Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein JK, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396PubMedCrossRefGoogle Scholar
  40. Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Brou-solle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986b) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Klaus Wienhard
    • 1
  • Rainer Wagner
    • 1
  • Wolf-Dieter Heiss
    • 1
  1. 1.MPI für neurologische ForschungKöln 91Deutschland

Personalised recommendations