Skip to main content

Transmission of Excitation from Cell to Cell

  • Chapter
Human Physiology
  • 1344 Accesses

Abstract

Within a nerve cell information is transferred by action potentials. It is passed from one cell to the next at morphologically specialized contact sites, the synapses. In neural and most other tissues (though not in many syncytia) the plasma membranes of adjacent cells do not fuse, and there is no direct communication between their interior spaces; therefore an action potential does not automatically proceed across a synapse. Special mechanisms are required for synaptic transmission. At chemical synapses a transmitter substance is used, and at electrical synapses, a particular current distribution. The chemical synapses are especially interesting because they enable very complex interactions of the cells and, from a medical viewpoint, because they are involved in specific pathological processes and there are certain drugs that act specifically upon them. Therefore we shall devote considerable attention to the chemical synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Handbooks

  1. Cooke, I., Lipkin, M.: Cellular neurophysiology, a source book. New York: Holt, Rinehart and Winston (1972) (Collection of important original papers)

    Google Scholar 

  2. ECCLES, J.C.: The physiology of synapses. Berlin-Göttingen-Heidelberg-New York: Springer (1964)

    Book  Google Scholar 

  3. Hille, B.: Ionic channels of excitable membranes. Sunderland, Mass.: Sinauer Assoc., (1984)

    Google Scholar 

  4. Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (eds.): Biophysik. Berlin, Heidelberg, New York: Springer (1984)

    Google Scholar 

  5. Kandel, E.R., Schwartz, J.H. (eds.): Principles of neural science. New York, Amsterdam, Oxford: Elsevier (1985)

    Google Scholar 

  6. Kuffler, S.W., Nicholls, J.G., Martin, A.R.: From neuron to brain, Second Edition Sunderland, Mass., Sinauer Associates (1984)

    Google Scholar 

  7. Schiebler, T.H., Schmidt, W.: Lehrbuch der gesamten Anatomie des Menschen, 3rd Edition, Berlin-Heidelberg-New York-Tokyo, Springer Verlag (1983)

    Google Scholar 

Original Papers and Reviews

  1. Bennett, M.L.V.: Electrical transmission: a functional analysis and comparison with chemical transmission. In: Cellular biology of neurons, Vol. 1, Sect. 1, Handbook of Physiology: The Nervous System. E.R. Kandel ed., 357–416. Baltimore: Williams and Wilkins (1977)

    Google Scholar 

  2. Blumberg, H., Jänig, W.: Activation of fibers via experimentally produced stump neuromas of skin nerves: ephaptic transmission or retrograde sprouting? Experimental Neurology 76, 468–482 (1982)

    Article  PubMed  CAS  Google Scholar 

  3. Colquhoun, D., Dreyer, F., Sheridan, R.E.: The actions of tubocurarine at the frog neuromuscular junction. J. Physiol. (Lond.), 293, 247–284 (1979)

    CAS  Google Scholar 

  4. Colquhoun, D., Sakmann, B.: Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.), 369, 501–557 (1985)

    CAS  Google Scholar 

  5. Dodge, F.A., Rahamimoff, R.: Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.), 193, 419–432 (1967)

    CAS  Google Scholar 

  6. Dudel, J.: The mechanism of presynaptic inhibition at the crayfish neuromuscular junction. Pflügers Arch. 248, 66–80 (1965)

    Article  Google Scholar 

  7. Dudel, J.: Dose-response curve of glutamate applied by superfusion to crayfish muscle synapses. Pflügers Arch. 368, 49–54 (1977)

    Article  PubMed  CAS  Google Scholar 

  8. Dudel, J. Kuffler, S.W.: Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.), 155, 543–562 (1961)

    CAS  Google Scholar 

  9. Franke, C., Dudel, J.: High-resolution measurements of single-channel currents activated by glutamate in crayfish muscle. Neurosci. Lett., 59, 241–246 (1985)

    Article  PubMed  CAS  Google Scholar 

  10. Furshpan, E.J., Potter, D.: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145: 289–325 (1959)

    CAS  Google Scholar 

  11. Furukawa, T., Furshpan, E.J.: Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophysiol. 26: 140–176 (1963)

    PubMed  CAS  Google Scholar 

  12. Ito, Y., Miledi, R., Vincent A., Newsom-Davis, J.: Acetylcholine receptors and end-plate electrophysiology in myasthenia gravis. Brain, 101, 345–368 (1978)

    Article  PubMed  CAS  Google Scholar 

  13. Katz, B., Miledi, R.: The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.), 195, 481–492 (1968)

    CAS  Google Scholar 

  14. Katz, B., Thesleff, S.: A study of the ‘desensitization’ pro-duced by acetylcholine at the motor end-plate. J. Physiol. (Lond.), 138, 63–80 (1957)

    CAS  Google Scholar 

  15. Kuffler, S.W.: Slow synaptic responses in Autonomic ganglia and the pursuit of a peptidergic transmitter. J. Exp. Biol. 89, 257–286 (1980)

    PubMed  CAS  Google Scholar 

  16. Libet, B.: Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace. Neurobiology of Learning and Memory, G. Lynch, J.L. McGaugh, N.M. Weinberger, editors, 405–430. New York, The Guilford Press (1984)

    Google Scholar 

  17. Llinas, R.R.: Calcium in synaptic transmission. Sci. Amer. 10, 38–48 (1982)

    Google Scholar 

  18. LOEWENSTEIN, W.R.: Junctional intercellular communication: the cell-to-cell membrane channel. Physiological Reviews, 61, 829–913 (1981)

    PubMed  CAS  Google Scholar 

  19. Magleby, K.L., Stevens, C.F.: The effect of voltage on the time course of end-plate currents. J. Physiol. (Lond.), 223, 151–171 (1972)

    CAS  Google Scholar 

  20. Magleby, K.L., Zengel, J.E.: A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction. J. Gen. Physiol. 80, 613–638 (1982)

    Article  PubMed  CAS  Google Scholar 

  21. Makowski, L., Caspar, D.L.D., Phillips, W.C., Goodenough, D.A.: Gap junction structures. II. Analysis of the X-ray diffraction data. J. Cell. Biol. 84: 629–645 (1977)

    Article  Google Scholar 

  22. Numa, S., Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Kikyotoni, S.: Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harbor Symposia Quant. Biol. XLVIII, 57–69 (1983)

    Article  Google Scholar 

  23. Parnas, H., Dudel, J., Parnas, I.: Neurotransmitter release and its facilitation in crayfish. 1. Saturation kinetics of release, and of entry and removal of calcium. Pflügers Arch. 393: 1–14 (1982)

    Article  PubMed  CAS  Google Scholar 

  24. Parnas, H., Dudel, J., Parnas, I.: Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release. Pflügers Arch. 406: 121–130 (1986)

    Article  PubMed  CAS  Google Scholar 

  25. Peper, K., Bradley, R.J., Dreyer, F.: The acetylcholine receptor at the neuromuscular junction. Physiol. Rev. 62, 1271–1340 (1982)

    PubMed  CAS  Google Scholar 

  26. Popot, J.L., Changeux, J.P.: Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol. Rev. 64, 1162–1239 (1984)

    PubMed  CAS  Google Scholar 

  27. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., Numa, S.: Role of acetylcholine receptor subunits in gating of the channel. Nature 318: 538–543 (1985)

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt, R.F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol., 63, Springer Verlag, Berlin-Heidelberg-New York (1971)

    Google Scholar 

  29. White, J.D., Stewart, K.D., Krause, J.E., McKelvy, J.F.: Biochemistry of peptide-secreting neurons. Physiol. Rev. 65, 553–606 (1985)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1989). Transmission of Excitation from Cell to Cell. In: Schmidt, R.F., Thews, G. (eds) Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73831-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73831-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73833-3

  • Online ISBN: 978-3-642-73831-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics