Advertisement

Distinction Between Amplified Noise and Deterministic Chaos by the Correlation Dimension

  • A. Freund
  • Th.-M. Kruel
  • F. W. Schneider
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)

Abstract

All experimental data are subject to noise due to a variety of sources depending on the nature of the experiment. In a continuous flow stirred tank reactor (CSTR), for example, relatively large concentration gradients may exist in the immediate neighborhood of the in-flow tube where the feed stream comes into first contact with the contents of the reactor. Due to stirring there will be concentration gradients variable in time which will decrease with increasing distance from the point of entry of the feed stream. Since mixing is not instantaneous, these concentration gradients may represent macroscopic fluctuations in concentration (and temperature) for time periods which also depend on the geometry of the reactor. Thus the CSTR represents a fluctuation or noise generator. Reactant streams may be important [1].

Keywords

Correlation Dimension Periodic Motion Feed Stream Derivative Method Fluctuation Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horsthemke, W. and Hannon, L.: In Non-Equilibrium Dynamics in Chemical Systems, ed. by C. Vidal and A. Pacault, (Springer Berlin, Heidelberg, New York, Tokyo 1984) p.178CrossRefGoogle Scholar
  2. 2.
    Freund, A., Kruel, Th. and Schneider, F.W.: Ber.Bunsenges.Phys. Chem. 90, 1079 (1986)Google Scholar
  3. 3.
    Freund, A., Kruel, Th.-M. and Schneider, F.W.: In Proceedings from MIDIT 1986 Workshop, ed. by R.D. Parmentier and P.L. Christiansen, (Manchester University Press, 1987) in pressGoogle Scholar
  4. 4.
    Grassberger, P. and Procaccia, I.: Phys. Rev. Lett. 50, 346 (1983)MathSciNetADSCrossRefGoogle Scholar
  5. 4a.
    Grassberger, P. and Procaccia, I.: Physica 9D., 189 (1983)MathSciNetADSGoogle Scholar
  6. 5.
    Takens, F.: In Lecture Notes in Mathematics, ed. by D.A. Rand and L.S. Young, Vol.898 (Springer 1981) p.366Google Scholar
  7. 6.
    Fraser, A.M. and Swinney, H.L.: Phys.Rev. 33A, 1134 (1986)MathSciNetADSGoogle Scholar
  8. 7.
    Wolf, A., Swift, J.B., Swinney, H.L. and Vastano, J.A.: Physica 16D, 285 (1985)MathSciNetADSGoogle Scholar
  9. 8.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shawf R.S.: Phys. Rev.Lett. 15, 712 (1980)ADSCrossRefGoogle Scholar
  10. 9.
    Kai, T. and Tomita, K.: Prog. Theor. Phys. 61, 54 (1979)ADSCrossRefGoogle Scholar
  11. 10.
    Hao, B.-L. and Zhang, S.-Y.: J. Stat. Phys. 28, 314 (1982);MathSciNetCrossRefGoogle Scholar
  12. 10a.
    Hao, B.-L.: “Bifurcation and Chaos in a Periodically Forced Limit Cycle Oscillator”, preprintGoogle Scholar
  13. 11.
    Russel, D.A., Hanson, J.D. and Ott, E.: Phys. Rev. Lett. 45, 1175 (1980);MathSciNetADSCrossRefGoogle Scholar
  14. 11a.
    Froehling, H., Crutchfield, J.P., Farmer, D. and Packard, N.H.: Physica 3D, 605 (1981)MathSciNetADSGoogle Scholar
  15. 12.
    Greenside, H.S., Wolf, A., Swift, J. and Pignataro, T.: Phys. Rev. 25A, 3453 (1982)MathSciNetADSGoogle Scholar
  16. 13.
    Ben-Mizrachi, A., Procaccia, I. and Grassberger, P.: Phys. Rev. 29A, 975 (1984);ADSGoogle Scholar
  17. 13a.
    Atten, P., Caputo, J.G., Malraison, B. and Gagné, Y.: In Special Issue of the Journal de Mécanique: Bifurcations and Chaotic Behavior, (1984), p.133Google Scholar
  18. 14.
    Hudson, J.L. and Mankin, J.C.: J. Chem. Phys. 74, 6171 (1981)ADSCrossRefGoogle Scholar
  19. 15.
    Theiler, J.: Phys. Rev. 34A, 2427 (1986)ADSGoogle Scholar
  20. 16.
    Schaffer, W.M., Ellner, S. and Kot, M.: J. Math. Biol. 24, 479 (1986)MathSciNetMATHCrossRefGoogle Scholar
  21. 17.
    Herzel, H., Ebeling, W. and Schulmeister, Th.: Z. f. Naturforsch. 42a, 136 (1987)MathSciNetGoogle Scholar
  22. 18.
    Kaplan, J. and Yorke, J.: In Lecture Notes in Mathematics, ed. by H.O. Peitgen and H.O. Walter, Vol. 730 (Springer 1978) p.228Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Freund
    • 1
  • Th.-M. Kruel
    • 1
  • F. W. Schneider
    • 1
  1. 1.Institute of Physical ChemistryUniversity of WürzburgWürzburgFed.Rep.of Germany

Personalised recommendations