Advertisement

Nonlinear Dynamics, Self-Organization and the Symbolic Representation of Complexity

  • G. Nicolis
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)

Abstract

Several contributors to this volume produce in their chapters convincing evidence about the usefulness of nonlinear dynamics and self-organization, in the modelling of a variety of concrete problems of relevance in chemistry and biology. In the present chapter we focus on a different aspect. Specifically, we show how nonequilibrium physics and nonlinear dynamics allow us to go one step further than the traditional description of physicochemical and biological systems and set up a symbolic representation in which such concepts as attractors, predictability, probability and information play a prominent role and allow us to better grasp the nature of complexity.

Keywords

Hopf Bifurcation Chaotic Dynamic Chaotic Attractor Symbolic Representation Markov Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, Berlin, Heidelberg 1983)zbMATHGoogle Scholar
  2. 2.
    P. Gaspard, G. Nicolis: J. Stat. Phys. 31, 499 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J.S. Nicolis: Dynamics of Hierarchical Systems (Springer, Berlin, Heidelberg 1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    H. Haken: Synergetics (Springer, Berlin, Heidelberg 1977)CrossRefGoogle Scholar
  5. 5.
    R. Bowen, D. Ruelle: Inven. Math. 29, 181 (1975)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Ya Sinai: Introduction to Erqodic Theory (Princeton Univ. Press, Princeton, N.J. 1977)Google Scholar
  7. 7.
    G. Nicolis, C. Nicolis: Phys. Rev. A (1987), submittedGoogle Scholar
  8. 8.
    G. Nicolis, G. Rao, S. Rao, C. Nicolis: In Coherence and Chaos in Dynamical Systems (Manchester Univ. Press, 1987)Google Scholar
  9. 9.
    O. Rössler: Ann. New York Acad. Sci. 316, 376 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    M. Eigen, P. Schuster: The Hypercycle (Springer, Berlin, Heidelberg 1979)CrossRefGoogle Scholar
  11. 11.
    H. Frisch: Adv. Chem. Phys. 55, 201 (1984)CrossRefGoogle Scholar
  12. 12.
    D. Lipman, W. Wilbur: J. Mol. Biology 163, 363 (1983)CrossRefGoogle Scholar
  13. 13.
    A. Nazarea, D. Bloch, A. Semrau: Proc. Natl. Acad. Sci. USA 82, 5537 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Nicolis
    • 1
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations