Skip to main content

Periodic and Chaotic Dynamics in Childhood Infections

  • Conference paper

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 39))

Abstract

Most biologists, when confronted with a time series, assume that the dynamical possibilities are quite limited. Either a system sits still, presumably at equilibrium, or it may oscillate with a fixed period. Anything else, they will probably tell you, is evidence of noise — observational error or chance perturbations from without. By these criteria, most biological systems, especially at the population level, are extremely noisy. Hence, it is no accident that mathematical biology places a heavy emphasis on stochastic models as well as on statistical techniques designed to extract the “deterministic” component of the signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Anderson, B.T. Grenfell, R.M. May: J. Hyg. Camb. 93, 587 (1984)

    Article  Google Scholar 

  2. W.M. Schaffer: IMA J. Math. Appl. Med. Biol. 2, 221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. W.M. Schaffer, M. Kot: J. theor. Biol. 112, 403 (1985)

    Article  MathSciNet  Google Scholar 

  4. L.F. Olsen: In Chaos in Biological Systems, ed. by H. Degn, A.V. Holden, L.F. Olsen, NATO ASI Ser., Vol. 138 (Plenum, New York 1987) p. 249;

    Google Scholar 

  5. L.F. Olsen, W.M. Schaffer, G.L. Truty: Theor. Pop. Biol., in press

    Google Scholar 

  6. R.M. May, R.M. Anderson: Nature 280, 459 (1979)

    Article  Google Scholar 

  7. R.M. Anderson: In Population Dynamics of Infectious Diseases. Theory and Applications, ed. by R.M. Anderson (Chapman and Hall, New York 1982) p. 1

    Google Scholar 

  8. K. Dietz: Lect. Notes Biomath. 11, 1 (1976)

    Google Scholar 

  9. P.E.M. Fine, J.A. Clarkson: Int. J. Epidem. 11, 5 (1982)

    Article  Google Scholar 

  10. I.B. Schwartz, H.L. Smith: J. Math. Biol. 18, 233 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Smith: J. Math. Anal. Appl. 64, 467 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J.L. Aron, I.B. Schwartz: J. theor. Biol. 110, 665 (1984)

    Article  MathSciNet  Google Scholar 

  13. M. Kot, W.M. Schaffer, G.L. Truty, D.J. Graser, L.F. Olsen: Ecol. Mod. (1988), in press

    Google Scholar 

  14. F. Takens: In Dynamical Systems and Turbulence, Warwick, ed. by D.A. Rand, L.S. Young (Springer, New York 1981), p. 366

    Chapter  Google Scholar 

  15. W.M. Schaffer: In Chaos in Biological Systems, ed. by H. Degn, A.V. Holden, L.F. Olsen, NATO ASI Ser., Vol. 138 (Plenum, New York 1987) p. 233

    Google Scholar 

  16. O.E. Rössler: Phys. Lett. 57A, 397 (1976)

    ADS  Google Scholar 

  17. P. Grassberger, I. Procaccia: Physica 9D, 189 (1983)

    MathSciNet  ADS  Google Scholar 

  18. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano: Physica 16D, 285 (1985)

    MathSciNet  ADS  Google Scholar 

  19. A.M. Albano, A.I. Mees, G.C. de Guzman, P.E. Rapp: In Chaos in Biological Systems, ed. by H. Degn, A.V. Holden, L.F. Olsen, NATO ASI Ser., Vol. 138 (Plenum, New York 1987) p. 207

    Google Scholar 

  20. D.S. Broomhead, G.P. King: Physica 20D, 217 (1986)

    MathSciNet  ADS  Google Scholar 

  21. A.I. Mees, P.E. Rapp, L.S. Jennings: preprint

    Google Scholar 

  22. W.M. Schaffer, S.E. Ellner, M. Kot: J. Math. Biol. 24, 479 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-P. Eckmann, D. Ruelle: Rev. Mod. Phys. 57, 617 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. I. Shimada, T. Nagashima: Prog. Theor. Phys. 61, 1606 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Bennetin, L. Galgani, A. Giorgil1i, J.-M. Strelcyn: Meccanica 15, 9 (1980)

    Article  ADS  Google Scholar 

  26. W.M. Schaffer, G.L. Truty: Dynamical Software: II. User’s Manual and Introduction to Chaotic Systems (Dynamical Systems, Inc., Tucson 1987)

    Google Scholar 

  27. C. Nicolis, G. Nicolis: Nature 311, 529 (1984)

    Article  ADS  Google Scholar 

  28. P. Grassberger: Nature 323, 609 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaffer, W.M., Olsen, L.F., Truty, G.L., Fulmer, S.L., Graser, D.J. (1988). Periodic and Chaotic Dynamics in Childhood Infections. In: Markus, M., Müller, S.C., Nicolis, G. (eds) From Chemical to Biological Organization. Springer Series in Synergetics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73688-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73688-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73690-2

  • Online ISBN: 978-3-642-73688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics