Advertisement

The Creutzfeld-Jakob Disease in the Hierarchy of Chaotic Attractors

  • A. Babloyantz
  • A. Destexhe
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)

Abstract

Until recently model construction was the main tool for understanding the long time dynamical behavior of complex systems [1]. If the experimental measurement of a property of the system exhibited some regularity of behavior, such as for example periodic oscillations, this behavior was often formulated in terms of a set of coupled nonlinear differential equations. The solutions to these equations were compared with the experimental data. However, most often models fit the data only qualitatively and do not account for the variabilities seen in the actual measured time-dependent variables. Today we realize that these variabilities cannot be ignored as they may indicate the presence of dynamics radically different from the assumed models.

Keywords

Phase Portrait Epileptic Seizure Correlation Dimension Chaotic Attractor Deterministic Chaos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Babloyantz: in Molecules, Dynamics and Life (Wiley, New York,1986)Google Scholar
  2. 2.
    P. Bergé, Y. Pomeau & C. Vidal: in L’Ordre dans le Chaos (Hermann, Paris, 1984)Google Scholar
  3. 3.
    J.P. Eckmann & DJ Ruelle: Rev. Mod. Phys. 57, 617 (1985)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P. Grassberger & I. Procaccia: Physica 9D, 189 (1983)MathSciNetADSGoogle Scholar
  5. 5.
    F. Takens: in Dynamical Systems and Turbulence Eds. D.A. Rand & L.S. Young, Lecture notes in mathematics 898, 366 (Springer,Berlin 1981)CrossRefGoogle Scholar
  6. 6. a-
    E.R. Pike, J.G. McWhirter, M Betero & C. de Mol: IEEE Proc. 131, 660 (1984)Google Scholar
  7. 6. b-
    D.S. Broomhead & B. King: Physica 20D, 217 (1986)MathSciNetADSGoogle Scholar
  8. 7.
    A. Babloyantz & A. Destexhe: Proc. Natl. Acad. Sci. USA 83, 3513 (1986)ADSCrossRefGoogle Scholar
  9. 8.
    A. Babloyantz & A. Destexhe: Biological Cybernetics 58, 203 (1988)MathSciNetCrossRefGoogle Scholar
  10. 9.
    A. Babloyantz & A. Destexhe: in Temporal disorder in human oscillatory systems Eds. L. Rensing, U. an der Heiden and M.C. Mackey, Springer Series in Synergetics 36,48 (1987)CrossRefGoogle Scholar
  11. 10.
    A. Babloyantz & A. Destexhe: in Proceedings of the first IEEE International Conference on Neural Networks, Eds M. Caudill and C Butler Vol IV, 31 (1987)Google Scholar
  12. 11.
    S.P. Layne, G. Mayer-Kress & J. Holzfuss: in Dimensions and Entropies in Chaotic Systems Ed. G. Mayer-Kress (Springer, Berlin 1986)Google Scholar
  13. 12.
    I. Dvorak & J. Siska: Phys. Jett 118A, 63 (1986)ADSGoogle Scholar
  14. 13.
    A. Babloyantz, C. Nicolis & M. Salazar: Phys. Lett. 111A, 152 (1985)ADSGoogle Scholar
  15. 14.
    J. Röschke & E. Basar: in Dynamics of Sensory and Cognitive Processing by the Brain, Ed. E. Basar, Springer Series in Brain Dynamics, Vol 1, 203 (1988)CrossRefGoogle Scholar
  16. 15.
    W.J. Freeman: Brain Res. Reviews 11, 259 (1986)CrossRefGoogle Scholar
  17. 16.
    D.E. Rössler: Ann. N.Y. Acad. Sci. 316, 376 (1979)ADSCrossRefGoogle Scholar
  18. 17.
    A. Brandstater & H.L. Swinney: Phys. Rev. 35A, 2207 (1987)ADSGoogle Scholar
  19. 18.
    A.M. Fraser & H.L. Swinney: Phys. Rev. 33A, 1134 (1986)MathSciNetADSGoogle Scholar
  20. 19.
    J.S. Nicolis: in Hierarchical Systems (Springer, Berlin 1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Babloyantz
    • 1
  • A. Destexhe
    • 1
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations