Thermodynamics of Energy Conversion in the Cell

  • J. W. Stucki
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)

Abstract

The aim of every evolved and adapted biological system should consist in extracting the quality of energy to do work, i.e. the exergy [1], from the available foodstuff in possibly the most efficient manner. This work may consist in muscular contraction, ion transport across a membrane, synthesis and assembly of the building blocks of the organism, etc. Common to all these processes is that they are driven by the energy-rich ATP. The most important source of ATP is oxidative phosphorylation which is localized within the mitochondria. In this process the exergy liberated from the combustion of reducing equivalents is converted into the formation of ATP. Therefore, oxidative phosphorylation can be considered as an exergetic energy converter. The aim of this paper is to give insight into some mechanisms by which the cell can optimize the exergetic efficiency of oxidative phosphorylation.

Keywords

Entropy Depression Creatine Crest Cond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Spiegier: Principles of Energetics (Springer Verlag, Berlin, Heidelberg 1983)Google Scholar
  2. 2.
    P.W. Atkins: The Second Law (Scientific American Library, W.H. Freeman & Company, New York 1984)Google Scholar
  3. 3.
    O. Kedem, S.R. Caplan: Trans. Farad. Soc. 21, 1897 (1965)CrossRefGoogle Scholar
  4. 4.
    J.W. Stucki: Eur. J. Biochem. 109, 269 (1980)CrossRefGoogle Scholar
  5. 5.
    J.J. Lemasters, W.H. Bulica: J. Biol. Chem. 256, 12949 (1981)Google Scholar
  6. 6.
    H.V. Westerhoff: Mosaic Nonequi 1ibri urn Thermodynamics, PhD Thesis, Amsterdam (Drukkerij Geria, Waarland 1983)Google Scholar
  7. 7.
    D. Pietrobon, S.R. Caplan: Biochemistry 24, 5764 (1985)CrossRefGoogle Scholar
  8. 8.
    S. Soboll, J.W. Stucki: Biochim. Biophys. Acta 807, 245 (1985)CrossRefGoogle Scholar
  9. 9.
    H.V. Westerhoff, K.J. Hellingwerf, K. VanDam: Proc. Natl. Acad. Sci. USA 80, 305 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Stucki, L.H. Lehmann, P. Mani: Biophys. Chem. 19, 131 (1984)CrossRefGoogle Scholar
  11. 11.
    J.W. Stucki: Progr. Biophys. Mol. Biol. 33, 99 (1978)CrossRefGoogle Scholar
  12. 12.
    J.W. Stucki: in preparationGoogle Scholar
  13. 13.
    J.W. Stucki: In Metabolie Compartmentation, ed. by H. Sies (Academic Press, New York 1982) p. 39Google Scholar
  14. 14.
    J. Lahav, A. Essig, S.R. Caplan: Biochim. Biophys. Acta 448, 389 (1976)CrossRefGoogle Scholar
  15. 15.
    L. Wojtzak: J. Bioenerg. Biomembr. 8, 293 (1976)Google Scholar
  16. 16.
    F. Wold: TIBS 11, 58 (1986)Google Scholar
  17. 17.
    D. Pietrobon, M. Zoratti, G.F. Azzone, J.W. Stucki, D. Walz: Eur. J. Biochem. 127. 483 (1982)CrossRefGoogle Scholar
  18. 18.
    B.C. Pressman, H.A. Lardy: Biochim. Biophys. Acta 18, 482 (1955)CrossRefGoogle Scholar
  19. 19.
    F. Morel, G. Lauquin, J. Lunardi, J. Duszynski, P.V. Vignais: FEBS Lett. 39, 133 (1974)CrossRefGoogle Scholar
  20. 20.
    J.W. Stucki: Eur. J. Biochem. 109, 257 (1980)CrossRefGoogle Scholar
  21. 21.
    A.L. Veuthey, J.W. Stucki: Biophys. Chem. 26, 19 (1987)CrossRefGoogle Scholar
  22. 22.
    A.L. Veuthey, J.W. Stucki: in preparationGoogle Scholar
  23. 23.
    G. Nicolis, I. Prigogine: Self-Organization in Noneguilibrium Systems (J. Wiley & Sons, New York 1977)Google Scholar
  24. 24.
    H. Haken: Synergetics. An Introduction (Springer-Verlag, Berlin, Heidelberg 1978)MATHGoogle Scholar
  25. 25.
    P.A. Samuelson: Economics (McGraw-Hill, International Student Edition 1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. W. Stucki
    • 1
  1. 1.Pharmakologisches InstitutBernSwitzerland

Personalised recommendations