Nuclear Structure Effects on the Suppression of Two-Neutrino Double Beta Decay

  • K. Muto
  • H. V. Klapdor
Conference paper


Neutrinoless double beta decay is expected to clarify the fundamental nature of the neutrino. In deducing quantities such as the neutrino mass, the nuclear part of the transition amplitude has to be calculated theoretically. A test of nuclear struc ture calculations is provided by the two-neutrino double beta (2v ββ decay which is free from unknown physical quantities on the particle physics side. It is shown, by applying the proton-neutron quasiparticle RPA model, that the 2v ββ decay rate is strongly suppressed by particle-hole correlations in the ground states of parent and daughter nuclei. Mainly responsible for the ground-state correlations is the parti cle-particle interaction. We have adjusted its strength to experimental Gamow-Teller strengths of β+ decays of nuclei with mass number A = 60−160 and obtain with this strength calculated 2v ββ half-lives consistent with experiment. The long standing discrepancy between theoretical and experimental half-lives by a large fac tor up to two orders of magnitude seems to be resolved.


Neutrino Mass Majorana Neutrino Neutrinoless Double Beta Decay Nuclear Matrix Element Quasiparticle Random Phase Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Primakoff and S.P. Rosen, Ann. Rev. Nucl. Part. Sci. 31 (1981) 145;.ADSCrossRefGoogle Scholar
  2. W.C. Haxton and G.J. Stephenson, Jr., Prog. Part. Nucl. Phys. 12 (1984) 409;.ADSCrossRefGoogle Scholar
  3. M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1;.ADSCrossRefGoogle Scholar
  4. J.D. Vergados, Phys. Rep. 133 (1986) 1.ADSCrossRefGoogle Scholar
  5. [2]
    S.L. Glashow, Nucl. Phys. 22 (1961) 579;.CrossRefGoogle Scholar
  6. S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;.ADSCrossRefGoogle Scholar
  7. A. Salam, Proc. of the 8th Nobel Symp., ed. N. Svartholm (Almqvist and Wiksell, Stockholm) p. 367.Google Scholar
  8. [3]
    J. Schechter and J.W.F. Valle, Phys. Rev. D25 (1982) 2951;.ADSGoogle Scholar
  9. J.F. Nieves, Phys. Lett. 147B (1984) 375;.Google Scholar
  10. E. Takasugi, Phys. Lett. 149B (1984) 372.ADSGoogle Scholar
  11. [4]
    P. Langacker, Phys. Rep. 72 (1981) 185.ADSCrossRefGoogle Scholar
  12. [5]
    D.O. Caldwell, R.M. Eisberg, D.M. Grumm, D.L. Hale, M.S. Witherell, F.S. Goulding, D.A. Landis, N.W. Madden, D.F. Malone, R.H. Pehl and A.R. Smith, Phys. Rev. D33 (1986) 2737.ADSGoogle Scholar
  13. [6]
    F.T. Avignone III, R.L. Brudzinski, J.C. Evans, Jr., W.K. Hensley, H.S. Miley and J.H. Reeves, Phys. Rev. C34 (1986) 666.ADSGoogle Scholar
  14. [7]
    S.R. Elliott, A.A. Hahn and M.K. Moe, Phys. Rev. Lett. 59 (1987) 2020.ADSCrossRefGoogle Scholar
  15. [8]
    T. Kirsten, E. Heusser, D. Kaether, J. Oehm, E. Pernicka and H. Richter, Proc. Int. Symp. on Nuclear Beta Decays and Neutrino, eds. T. Kotani, H. Ejiri and E. Takasugi (World Scientific, Singapore, 1986) p. 81.Google Scholar
  16. [9]
    O.K. Manuel, Proc. Int. Symp. on Nuclear Beta Decays and Neutrino, eds. T. Kotani, H. Ejiri and E. Takasugi (World Scientific, Singapore, 1986) p. 71.Google Scholar
  17. [10]
    W.C. Haxton, G.J. Stephenson, Jr. and D. Strottman, Phys. Rev. D25 (1982) 2360.ADSGoogle Scholar
  18. [11]
    H.V. Klapdor and K. Grotz, Phys. Lett. 142B (1984) 323;.ADSGoogle Scholar
  19. K. Grotz and H.V. Klapdor, Nucl. Phys. A460 (1986) 395.ADSGoogle Scholar
  20. [12]
    P. Vogel and P. Fisher, Phys. Rev. C32 (1985) 1362.ADSGoogle Scholar
  21. [13]
    P. Vogel and M.R. Zirnbauer, Phys. Rev. Lett. 52 (1986) 3148.ADSCrossRefGoogle Scholar
  22. [14]
    O. Civitarese, A. Faessler and T. Tomoda, Phys. Lett. 194B (1987) 11.ADSGoogle Scholar
  23. [15]
    K. Muto and H.V. Klapdor, Phys. Lett. 201B (1988) 420.ADSGoogle Scholar
  24. [16]
    J.A. Halbleib and R.A. Sorensen, Nucl. Phys. A98 (1967) 542.ADSGoogle Scholar
  25. [17]
    K. Muto, E. Bender and H.V. Klapdor, submitted to Phys. Lett. B.Google Scholar
  26. [18]
    A. Bohr and B.R. Mottelson, Nuclear Structure (Benjamin, New York, 1969) Vol. I.Google Scholar
  27. [19]
    R. Vinh Mau, Mesons in Nuclei, Vol. I, eds. M. Rho and D.H. Wilkinson (North-Holland, Amsterdam, 1979) p. 151;.Google Scholar
  28. M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Cote, P. Pires and R. de Tourreil, Phys. Rev. C21 (1985) 1.Google Scholar
  29. [20]
    N. Anantaraman, H. Toki and G.F. Bertsch, Nucl. Phys. A398 (1983) 269.ADSGoogle Scholar
  30. [21]
    A.H. Wapstra and G. Audi, Nucl. Phys. A432 (1985) 1.ADSGoogle Scholar
  31. [22]
    R. Madey, B.S. Flanders, B.D. Anderson, A.R. Baldwin, J.W. Watson, S.M. Austin, C.C. Foster, H.V. Klapdor and K. Grotz, preprint, 1987.Google Scholar
  32. [23]
    Table of Isotopes, 7th ed., eds. C.M. Lederer and V.S. Shirley (Wiley, New York, 1978).Google Scholar
  33. [24]
    T. Tomoda and A. Faessler, Phys. Lett. 199B (1987) 475.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Muto
    • 1
  • H. V. Klapdor
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations