Skip to main content

A Phylogenetic Hypothesis for Alzheimer’s Disease

  • Conference paper
Genetics and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

It is proposed that Alzheimer’s disease is a human phylogenetic disease because of evidence that paired helical filaments, characteristic of the postmortem Alzheimer brain, are not found in brains of nonhuman primates; because of functional studies in life, and pathological studies postmortem, that the association neocortices and their connections are specifically involved throughout the course of the disease; and because of evidence that genes on chromosome 21 contribute to Alzheimer pathology in some families as well as in Down’s syndrome. It is argued that the association necortices and their connections, which underwent integrated elaboration during recent hominid evolution, became vulnerable to Alzheimer pathology through the genomic processes that promoted their evolution. Some genes involved in integrated phylogeny of the association system, therefore, may contribute to the genetic liability for Alzheimer’s disease in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    Article  PubMed  CAS  Google Scholar 

  • Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism and Alzheimer disease. Ann Neurol 10: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ (1979) Topography of Pick inclusion bodies in hippocampi of demented patients. A quantitative study. J Neuropathol Exp Neurol 38: 614–620

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, MacGregor J, Fyfe IM, Rapoport SI, London ED (1983) Paucity of morphological changes in the brains of aging Beagle dogs: further evidence that Alzheimer lesions are unique for primate central nervous system. Neurobiol Aging 4: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, Nuttal K (1981) Topography of neurofibrillary tangles and granulovacuoles in hippocampi of patients with Down’s syndrome: quantitative comparison with normal ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 7: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Mazurek MF, Svendsen CN, Bird ED, Martin JB (1986) Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease. Ann Neurol 20: 489–495

    Article  PubMed  CAS  Google Scholar 

  • Bishop DT (1983) Multifactorial inheritance. In: Emery AEH, Rimoin DL (eds), Principles and practice of medical genetics, vol 1. Churchill Livingstone, Edinburgh, pp 111–119

    Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166: 257–262

    Article  Google Scholar 

  • Braak H (1978) Pigment architecture of the human telencephalic cortex. III. Regio praesubicularis. Cell Tissue Res 190: 509–523

    Article  PubMed  CAS  Google Scholar 

  • Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkrankh 223: 15–33

    Article  CAS  Google Scholar 

  • Campbell BG (1985) Humankind emerging, 4th edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Cann RL (1987) In search of Eve. A DNA trail leads to a single African woman, 200,000 years old. Sciences Sept/Oct: 30–37

    Google Scholar 

  • Casanova MF, Walker LC, Whitehouse PJ, Price DL (1985) Abnormalities of the nucleus basalis in Down’s syndrome. Ann Neurol 18: 310–313

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis J (1986) Heredity and dementia. Gerontology 32 [Suppl 1]: 73–79

    Article  PubMed  Google Scholar 

  • Cowan WM (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M (ed), Development and aging in the nervous system. Academic, New York, pp 19–41

    Google Scholar 

  • Creasey H, Rapoport SI (1985) The aging human brain. Ann Neurol 17: 2–10

    Article  PubMed  CAS  Google Scholar 

  • Creasey H, Schwartz M, Frederickson H, Haxby JV, Rapoport SI (1986) Quantitative computed tomography in dementia of the Alzheimer type. Neurology 36: 1563–1568

    PubMed  CAS  Google Scholar 

  • Critchley M (1953) The parietal lobes. Arnold, London

    Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171: 319–327

    Article  PubMed  CAS  Google Scholar 

  • De Grouchy J, Turleau C, Finaz C (1978) Chromosomal phylogeny of the primates. Annu Rev Genet 12: 289–328

    Article  PubMed  Google Scholar 

  • Demeter S, Rosene DL, Van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233: 30–47

    Article  PubMed  CAS  Google Scholar 

  • Dolon TA, Lalande M, Wyman A, Brans G, Latt SA (1986) Isolation of molecular probes associated with the chromosome 15 instability in the Prader-Willi syndrome. Proc Nat Acad Sci USA 83: 4408–4412

    Article  Google Scholar 

  • Duara R, Grady CL, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36: 879–887

    PubMed  CAS  Google Scholar 

  • Duyckaerts C, Hauw JJ, Piette F, Rainsard C, Poulain V, Berthaux P, Escourolle R (1985) Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol (Berl) 66: 72–74

    Article  CAS  Google Scholar 

  • Edelman GM (1987) Neural darwinism. The theory of neuronal group selection. Basic, New York

    Google Scholar 

  • Eldredge N, Gould J (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco pp 82–115

    Google Scholar 

  • Feinberg I (1982–1983) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17: 319–334

    Article  CAS  Google Scholar 

  • Fonnum F, Soreide A, Kvale I, Walker J, Walaas I (1981) Glutamate in cortical fibers. Adv Biochem Psychopharmacol 27: 29–41

    PubMed  CAS  Google Scholar 

  • Fox MW (1970) Central nervous system. In: Andersen AC (ed) The beagle as an experimental dog. Iowa State University Press, Ames, pp 350–373

    Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. Brain 88: 237–294

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Comm 122: 1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing Rhesus monkey. Brain Res 122: 393–413

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1984) Modular organization of prefrontal cortex. Trends Neurosc 7: 419–424

    Article  Google Scholar 

  • Goldman-Rakic PS, Isseroff A, Schwartz ML, Bugbee NM (1987) The neurobiology of cognitive development. In: Mussen PH (ed) Handbook of child psychology, 4th edn, vol 2. Infancy and developmental psychobiology. Wiley, New York, pp 281–344

    Google Scholar 

  • Gorry JD (1963) Studies on the comparative anatomy of the ganglion basale of Meynert. Acta Anat 55: 51–104

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-[3H] glutamate binding. J Neurochem 48: 543–551

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Hopkinson DA (1972) Average heterozygosity per locus in man: an estimate based on the incidence of enzyme polymorphisms. Ann Hum Genet 36: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985)Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5: 193–200

    Article  Google Scholar 

  • Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede nonmemory cognitive deficits in early Alzheimer’s-type dementia. Arch Neurol 43: 882–885

    PubMed  CAS  Google Scholar 

  • Herzog AG, Kemper TL (1980) Amygdaloid changes in aging and dementia. Arch Neurol 37: 625–629

    PubMed  CAS  Google Scholar 

  • Herzog AG, Van Hoesen G (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115: 57–69

    Article  PubMed  CAS  Google Scholar 

  • Heston LL, Mastri AR, Anderson VE, White J (1981) Dementia of the Alzheimer type. Clinical genetics, natural history, and associated conditions. Arch Gen Psychiatry 38: 1085–1090

    PubMed  CAS  Google Scholar 

  • Hofman MA (1983) Encephalization in hominids: evidence for the model of punctuationalism. Brain Behav Evol 22:102–117

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1985) Neuronal correlates of corticalization in mammals: a theory. J Theoret Biol 112: 77–95

    Article  CAS  Google Scholar 

  • Holloway RL Jr (1968) Evolution of the primate brain: some aspects of quantitative relations. Brain Res 7: 121–172

    Article  PubMed  Google Scholar 

  • Hood L, Campbell JH, Elgin SCR (1975) The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet 9: 305–353

    Article  PubMed  CAS  Google Scholar 

  • Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI (1987) Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res 407: 294–306

    Article  PubMed  CAS  Google Scholar 

  • Humphrey T (1972) The development of the human amygdaloid complex. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum Press, New York, pp 21–82

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barns CL (1984) Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 225: 1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481

    Article  PubMed  CAS  Google Scholar 

  • Jamada M, Mehraein P (1968) Verteilungsmuster der senilen Veränderungen im Gehirn. Die Beteiligung des limbischen Systems bei hirnatrophischen Prozessen des Seniums und bei Morbus Alzheimer. Arch Psychiatr Nervenkrankh 211: 308–324

    Article  CAS  Google Scholar 

  • Jones KW, Prosser J, Corneo G, Ginelli E, Borrow M (1972) Satellite DNA, constitutive heterochromatin, and human evolution. In: Modern aspects of cytogenetics: constitutive heterochromatin in man. Symposia Medic Hoechst 6: 45–74

    Google Scholar 

  • Kaas JH (1982) The segregation of function in the nervous system: why do sensory systems have so many subdivisions? Contrib Sensory Physiol 7: 201–240

    Google Scholar 

  • Kamo H, McGeer PL, Harrop R, McGeer E, Calne DB, Martin WRW, Pate BD (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445

    PubMed  CAS  Google Scholar 

  • Katzman R (1976) The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol 33: 217–218

    PubMed  CAS  Google Scholar 

  • Kemper T (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed) Clinical neurology of aging. Oxford University Press, Oxford, pp 9–52

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Duffy LK, Dowling MM, Abraham C, McCluskey A, Selkoe DJ (1984) Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes in Alzheimer neurofibrillary tangles. Proc Nat Acad Sci USA 81: 7941–7945

    Article  PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1978) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol 178: 255–280

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216

    Article  PubMed  CAS  Google Scholar 

  • Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, Reichardt LF (1986) Nerve growth factor expression in the developing rat brain. Science 234: 352–355

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Cooper V (1985) Cell surface localization of the limbic antigen: an ultrastructural immunocy-tochemical analysis. Soc Neurosci Abstracts 11: 1106

    Google Scholar 

  • Lewis DA, Campell MJ, Huntley GW, Benson DL, Terry RD, Morrison JH (1986) Laminar and regional specificity of tangle and plaque distribution in Alzheimer’s disease (AD): a quantitative study of visual and auditory cortices. Soc Neurosci Abstracts 12: 943

    Google Scholar 

  • Lima-De-Faria A (1983) Molecular evolution and organization of the chromosome. Elsevier, Amsterdam

    Google Scholar 

  • Luxenberg J, Creasey H, Haxby J, Sundaram M, Rapoport SI (1986) The rate of ventricular enlargement in dementia of the Alzheimer type (DAT) correlates with rate of neuropsychological deterioration. J Nucl Med 27: 1024

    Google Scholar 

  • Mann DMA, Yates PO, Marchyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinmann NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4259

    Article  PubMed  CAS  Google Scholar 

  • Milner B, Petrides M (1984) Behavioural effects of frontal-lobe lesions in man. Trends Neurosci 7: 403–407

    Article  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273: 297–298

    Article  PubMed  CAS  Google Scholar 

  • Nee LE, Eldridge R, Sunderland T, Thomas CB, Katz D, Thompson KE, Weingartner H, Weiss H, Julian C, Cohen R (1987) Dementia of the Alzheimer type: clinical and family study of 22 twin pairs. Neurology 37: 359–363

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pandya DN, Seltzer B (1982) Association areas of the cerebral cortex. Trends Neurosci 5: 386–390

    Article  Google Scholar 

  • Patterson D, Jones C, Scoggin C, Miller YE, Graw S (1982) Somatic cell genetic approaches to Down’s syndrome. Ann NY Acad Sci 396: 69–91

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Esiri MM, Hioras RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci USA 82: 4531–4534

    Article  PubMed  CAS  Google Scholar 

  • Pollock NJ, Mirra SS, Binder LI, Hansen LA, Wood G (1986) Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet II: 1211

    Article  Google Scholar 

  • Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134: 495–506

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (1988a) Alzheimer’s disease: phylogenetic vulnerability of associative neocortex and its connections. Cold Spring Harbor, Banbury Report. Cold Spring Harbor Laboratory, New York, in press

    Google Scholar 

  • Rapoport SI (1988b) Brain evolution and Alzheimer’s disease. Rev Neurol 144: 79–90

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Horwitz B, Haxby JV, Grady CL (1986) Alzheimer’s disease: metabolic uncoupling of associative brain regions. Can J Neurol Sci 13: 540–545

    PubMed  CAS  Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5: 2801–2808

    PubMed  CAS  Google Scholar 

  • Roses AD, Pericak-Vance MA, Haynes CS, Haines JL, Gaskell PA, Yamaoka L, Hung WY, Heyman AL, Clark CM (1988) Linkage analysis in late onset familial Alzheimer’s disease (AD). Ninth International Workshop on Human Gene Mapping, in press

    Google Scholar 

  • Rossor MN, Emson PC, Iverson LL, Mountjoy CQ, Roth M, Fahrenkrug J, Rehfeld JF (1982) Neuropeptides and neurotransmitters in cerebral cortex in Alzheimer’s disease. In: Corkin S, Davis KL, Growdon JH, Usdin E, Wurtman RJ (eds) Alzheimer’s disease: a report of progress in research. Aging, vol 19. Raven, New York, pp 15–24

    Google Scholar 

  • Saitoh T, Dobkins KR (1986) Increased in vitro phosphorylation of a Mr 60,000 protein in brain from patients with Alzheimer disease. Proc Natl Acad Sci USA 83: 9764–9767

    Article  PubMed  CAS  Google Scholar 

  • Sanderson KJ (1974) Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), raccoon (Procynoidae) and fox (Canidae) families. J Comp Neurol 153: 239–266

    Article  Google Scholar 

  • Sarnat HB, Netsky MG (1981) Evolution of the nervous system, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sawaguchi T, Kubota K (1986) A hypothesis on the primate neocortex evolution: column-multiplication hypothesis. Int J Neurosci 30: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Schapiro MB, Haxby JV, Grady CL, Rapoport SI (1986) Cerebral glucose utilization, quantitative tomography, and cognitive function in adult Down syndrome. In: Epstein CJ (ed), The neurobiology of Down syndrome. Raven, New York, pp 89–108

    Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235: 873–877

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1: 7–36

    Article  PubMed  CAS  Google Scholar 

  • Stephan H, Andy OJ (1970) The allocortex in primates. In: Noback CR, Montagna W, (eds) The primate brain, advances in primatology, vol 1. Appleton-Century-Crofts, New York, pp 109–135

    Google Scholar 

  • Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat 98: 130–153

    Article  PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growdon J, Bruni A, Foncin J-F, Salmon D, Frommelt P, Amaducci L, Sorbi S, Piacentini S, Stewart GD, Hobbs WJ, Conneally PM, Gusella JF (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 216: 885–890

    Article  Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC, Brans GAP, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235: 880–884

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE, St George-Hyslop PH, Haines JL, Polinsky RJ, Nee L, Foncin J-F, Neve RL, McClatchey AI, Conneally PM, Gusella JF (1987) The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid β-protein gene. Nature 329: 156–157

    Article  PubMed  CAS  Google Scholar 

  • Terry RD (1978) Ultrastractural alterations in senile dementia. In: Katzman R, Terry RD, Bick KL, (eds) Alzheimer’s disease: senile dementia and related disorders. Aging, vol 7. Raven, New York, pp 375–382

    Google Scholar 

  • Terry RD, Peck A, Deteresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Wisniewski HM (1972) Ultrastracture of senile dementia and of experimental analogs. In: Gaitz CM (ed) Advances in behavioral biology, vol 3. Aging and the brain. Plenum, New York

    Google Scholar 

  • Tomlinson BE, Corsellis JAN (1984) Ageing and the dementias. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s Neuropathology 4th edn. Wiley, New York, pp 950–1025

    Google Scholar 

  • Trisler D (1982) Are molecular markers of cell position involved in the formation of neural circuits? Trends Neurosci 5: 306–310

    Article  CAS  Google Scholar 

  • Van Essen DC (1979) Visual areas of the mammalian cerebral cortex. Annu Rev Neurosci 2:227–263

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345–350

    Article  Google Scholar 

  • Van Hoesen GW, Rosene DL, Mesulam M-M (1979) Subicular input from temporal cortex in the rhesus monkey. Science 205: 608–610

    Article  PubMed  Google Scholar 

  • Wechsler AF, Verity MA, Rosenschein S, Fried I, Scheibel AB (1982) Pick’s disease. A clinical, computed tomographic, and histological study with Golgi impregnation observations. Arch Neurol 39: 287–289

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ (1987) Neurotransmitter receptor alterations in Alzheimer disease: a review. Alzh Dis Assoc Disord 1: 9–18

    Article  CAS  Google Scholar 

  • Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106: 183–212

    Article  PubMed  Google Scholar 

  • Wilson AC (1985) The molecular basis of evolution. Sci Am 253: 164–173

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46: 573–639

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Sarich VM, Maxson LA (1974) The importance of gene rearrangement in evolution: evidence from studies of rates of chromosomal, protein, and anatomical evolution. Proc Natl Acad Sci USA 71: 3028–3030

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski HM (1978) Possible viral etiology of neurofibrillary changes and neuritic plaques. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: senile dementia and related disorders. Aging, vol 7. Raven, New York, pp 555–557

    Google Scholar 

  • Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5: 288–294

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17: 278–282

    Article  PubMed  CAS  Google Scholar 

  • Wolozin BL, Prachnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232: 648–650

    Article  PubMed  CAS  Google Scholar 

  • Wood JB, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau (τ). Proc Nat Acad Sci USA 83: 4040–4043

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Davis, Philadelphia, pp 3–70

    Google Scholar 

  • Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, Ritchie IM, Urquhart A (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res 280: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Sawyer JR, Dunham K (1980) The striking resemblance of high-resolution G-banded chromosomes in man and chimpanzee. Science 208:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan Y, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158–2162

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapoport, S.I. (1988). A Phylogenetic Hypothesis for Alzheimer’s Disease. In: Sinet, P.M., Lamour, Y., Christen, Y. (eds) Genetics and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73647-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73647-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73649-0

  • Online ISBN: 978-3-642-73647-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics