Advertisement

Abstract

The development of tissues concerned with the relationship and material exchange between the various parts of the plant may be considered as a consequence or as a prerequisite of the increasing complexity and size of the organs of ground plants growing in the atmosphere. Tissues most particularly differentiated for this function or “conducting tissues” are divided into two types: phloem and xylem or vascular tissue. The terms phloem and xylem, introduced by Naegeli (1858), appear to be the most convenient and their generalized use is justified.

Keywords

Companion Cell Sieve Tube Sieve Element Secondary Phloem Sieve Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe LB, Crafts AS (1939) phloem of white pine and other coniferous species. Bot Gaz 100: 695–722Google Scholar
  2. Aldaba VC (1927) The structure and development of the cell wall in plants. I. Bast fibers of Boehmeria and Linum. Am J Bot 14: 16–24CrossRefGoogle Scholar
  3. Arsanto JP (1970) Infrastructures et différenciation du protophloème dans les jeunes racines du Sarrasin (Polygonum fagopyrum, Polygonacées). C R Acad Sei Paris 270 D: 3071–3074Google Scholar
  4. Arsanto JP (1977) Sur l’ultrastructure, la biogenèse et les changements conformationnels des constituants protéiques-P du phloème de trois Dicotylédones. C R Acad Sci Paris 285 D: 93–96Google Scholar
  5. Arsanto JP (1979) Ontogenèse du phloème, en particulier des protéines-P, chez quelques Dicotylédones. Thèse Dr es-Sci Univ Aix-Marseille I IGoogle Scholar
  6. Arsanto JP (1982) Observations on P-proteins in dicotyledons. Substructural and developmental features. Am J Bot 69: 1200–1212CrossRefGoogle Scholar
  7. Arsanto JP, Coulon J (1974) Détection radio-autographique et cytochimique des sites d’élaboration ou de transit des précurseurs polysaccharidiques pariétaux dans les cellules criblées en cours de différenciation du métaphloème caulinaire de deux Cucurbitacées voisines (Cucurbita pepo L. et Ecballium elaterium R.). CR Acad Sei Paris 278 D: 2775–2778Google Scholar
  8. Arsanto JP, Coulon J (1975) Application des méthodes cytochimique et radio-autographique de détection ultrastructurale des polysaccharides à l’étude de la différenciation des plateaux criblés du métaphloème caulinaire de deux Cucurbitacées voisines (Ecballium elaterium R. et Cucurbita pepo L.). CR Acad Sci Paris 280 D: 601–604Google Scholar
  9. Bailey IW (1923) Slime bodies of Robinia pseudoacacia. Phytopathology 13: 332–333Google Scholar
  10. Bailey IW, Swamy BGL (1949) The morphology and relationships of Austrobaileya. J Arnold Arbor Harv Univ 30: 211–266Google Scholar
  11. Behnke HD (1965) Über das Phloem der Dioscoreaceen unter besonderer Berücksichtigung ihrer Phloembecken. II. Elektronenoptische Untersuchungen zur Feinstruktur des Phloembeckens. Z Pflanzenphysiol 53: 214–244Google Scholar
  12. Behnke HD (1968) Zum Aufbau gitterartiger Membranstrukturen im Siebelementplasma von Dioscorea. Protoplasma 66: 287–310CrossRefGoogle Scholar
  13. Behnke HD (1971) The contents of the sieve-plate pores in Aristolochia. J Ultrastruct Res 36: 493–498CrossRefPubMedGoogle Scholar
  14. Behnke HD (1972) Sieve-tube plastids in relation to angiosperm systematics. An attempt towards a classification by ultrastructural analysis. Bot Rev 38: 155–197 (références des multiples publications antérieures)Google Scholar
  15. Behnke HD (1973) Plastids in sieve elements and their companion cells. Investigations on monocotyledons, with special reference to Smilax and Tradescantia. Planta (Beri) 110: 321–328CrossRefGoogle Scholar
  16. Beyenbach J, Weber C, Kleinig H (1974) Sieve tube proteins from Cucurbita maxima. Planta 119: 113–124CrossRefGoogle Scholar
  17. Bouck GB, Cronshaw J (1965) The fine structure of differentiating sieve tube elements. J Cell Biol 25: 79–95CrossRefGoogle Scholar
  18. Burr FA, Evert RF (1973) Some aspects of sieve element structure and development in Selaginella Kraussiana. Protoplasma 78: 81–97CrossRefGoogle Scholar
  19. Buvat R (1963 a) Infrastructure et différenciation des cellules criblées de Cucurbita pepo. Evolution du tonoplaste et signification du contenu cellulaire final. CR Acad Sci Paris 256: 5193–5195Google Scholar
  20. Buvat R (1963 b) Les infrastructures et la différenciation des cellules criblées de Cucurbita pepo L. Port Acta Biol sér 7 A: 249–299Google Scholar
  21. Buvat R (1963 c) Infrastructure et différenciation des cellules criblées de Cucurbita pepo. Relations entre la membrane pectocellulosique et les membranes plasmiques du cytoplasme. C R Acad Sci Paris 257: 221–224Google Scholar
  22. Buvat R (1981) Vésicules “alvéolées” et vésicules “épineuses” dans les racines de l’Orge. CR Acad Sci Paris sér III 292: 825–832Google Scholar
  23. Buvat R, Robert G (1979) Activités golgiennes et origine des vacuoles dans les cellules criblées du protophloème de la racine de l’Orge (Hordeum sativum). Ann Sci Nat Bot Paris 13 e sér 1: 51–66Google Scholar
  24. Catesson AM (1966) Présence de phytoferritine dans le cambium et les tissus conducteurs de la tige de Sycomore, Acer pseudoplatanus. CR Acad Sci Paris 262 D: 1070–1073Google Scholar
  25. Catesson AM (1973) Observations cytochimiques sur les tubes cirblés de quelques Angiospermes. J Microsc 16: 95–104Google Scholar
  26. Catesson AM (1980) Localization of phloem oxidases. Ber Dtsch Bot Ges 93: 141–152Google Scholar
  27. Catesson AM, Czaninski Y (1967) Mise en évidence d’une activité phosphatasique acide dans le reticulum endoplasmique des tissus conducteurs de Robinier et de Sycomore. J Microscopie 6: 509–514Google Scholar
  28. Catesson AM, Liberman-Maxe M (1974) Les mitochondries des cellules criblées: réactions avec la 3-3’-diaminobenzidine. CR Acad Sci Paris 278 D: 2771–2773Google Scholar
  29. Crafts AS (1938) Translocation in plants. Plant Physiol 13: 791–814CrossRefPubMedGoogle Scholar
  30. Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93: 123–139Google Scholar
  31. Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816CrossRefPubMedGoogle Scholar
  32. Cronshaw J, Esau K (1968) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39Google Scholar
  33. Currier HB (1957) Callose substance in plant cells. Am J Bot 44: 478–488CrossRefGoogle Scholar
  34. Czaninski Y, Catesson AM (1970) Activités peroxydasiques d’origines diverses dans les cellules d’Acer pseudoplatanus ( Tissus conducteurs et cellules en culture ). J Microsc 9: 1089–1102Google Scholar
  35. Deshpande BP (1974) On the occurrence of spiny vesicles in the phloem of Salix. Ann Bot 38: 865–868Google Scholar
  36. Dunoyer de Segonzac G (1958) L’ontogénie du phloème chez Vanilla planifolia Andr. Rev Cytol Biol Vég 19: 153–184Google Scholar
  37. Engleman EM (1965) Sieve element of Impatiens sultanii. II. Developmental aspects. Ann Bot 29: 103–118Google Scholar
  38. Esau K (1943) Vascular differentiation in the vegetative shoot of Linum. III. The origin of the bast fibers. Am J Bot 30: 579–586CrossRefGoogle Scholar
  39. Esau K (1947) A study of some sieve-tube inclusions. Am J Bot 34: 224–233CrossRefGoogle Scholar
  40. Esau K (1961) Plants, viruses and insects. Harvard University Press, Cambridge MassGoogle Scholar
  41. Esau K (1965) Plant anatomy. Wiley New YorkGoogle Scholar
  42. Esau K, Cheadle VI (1958) Wall thickening in sieve elements Proc Natl Acad Sci USA 44: 546–553CrossRefGoogle Scholar
  43. Esau K, Cheadle VI (1965) Cytologic studies on phloem. University of California Press, Berkeley and Los Angeles 36: 253–344Google Scholar
  44. Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33: 26–35CrossRefPubMedGoogle Scholar
  45. Esau K, Cronshaw J (1968 a) Plastids and mitochondria in the phloem of Cucurbita. Can J Bot 46: 877–880Google Scholar
  46. Esau K, Cronshaw J (1968 b) Endoplasmic reticulum in the sieve element of Cucurbita. J Ultrastruct Res 23: 1–14Google Scholar
  47. Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34: 144–158CrossRefPubMedGoogle Scholar
  48. Eschrich W (1956) Kallose. Protoplasma 47: 487–530CrossRefGoogle Scholar
  49. Eschrich W (1963) Beziehungen zwischen dem Auftreten von Callose und der Feinstruktur des primären Phloems bei Cucurbita ficifolia. Planta (Berl) 59: 243–261CrossRefGoogle Scholar
  50. Evert RF (1984) Comparative structure of phloem. In: Contemporary problems in plant anatomy, pp 145–234. Academic PressGoogle Scholar
  51. Evert RF, Deshpande BP (1969) Electron microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Protoplasma 68: 403–432CrossRefGoogle Scholar
  52. Evert RF, Eichhorn SE (1974) Sieve element ultrastructure in Platycerium bifurcatum and some other polypodiaceous ferns: the refractive spherules. Planta 119: 319–334CrossRefGoogle Scholar
  53. Fensom DS (1972) A theory of translocation in phloem of Heracleum. Can J Bot 50: 479–497CrossRefGoogle Scholar
  54. Fisher DG, Evert RF (1979). Endoplasmic reticulum-dictyosome involvement in the origin of refractive spherules in sieve elements of Davallia fijiensis Hook. Ann Bot 43: 255–258Google Scholar
  55. Fisher DG, Evert RF (1982) Studies on the leaf of Amaranthus retroflexus ( Amaranthaceae) quantitative aspects and solute concentration in the phloem. Am J Bot 69: 1375–1388Google Scholar
  56. Friend DS, Farquhar MG (1967) Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol 35: 357–371CrossRefPubMedGoogle Scholar
  57. Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34: 347–387CrossRefGoogle Scholar
  58. Gomori G (1952) Microscopic histochemisty; principles and practices. University of Chicago Press: ChicagoGoogle Scholar
  59. Johnson RPC (1973) Filaments but no transcellular strands in sieve pores in freeze-etched, translocating phloem. Nature 244: 464–466CrossRefGoogle Scholar
  60. Jupin H, Catesson AM, Giraud G, Hauswirth N (1975) Chloroplastes à empilements granaires anormaux appauvris en photosystème I dans le phloeme de Robinia pseudoacacia et de Acer pseudoplatanus. Z Pflanzenphysiol 75: 95–106Google Scholar
  61. Kessler G (1958) Zur Charakterisierung der Siebröhrenkallose. Ber Schweiz Bot Ges 68: 5–43Google Scholar
  62. Kollmann R (1960) Untersuchungen über das Protoplasma der Siebröhren von Passiflora coerulea. I. Lichtoptische Untersuchungen. Planta (Berl) 54: 611–640CrossRefGoogle Scholar
  63. Kollmann R (1964) On the fine structure of the sieve element protoplast. Phytomorphology 14: 247–264Google Scholar
  64. Kollmann R, Schumacher W (1962) Über die Feinstruktur des Phloems von Metasequoia glytostroboides und seine Jahreszeitlichen Veränderungen. III. Die Reaktivierung der Phloemzellen im Frühjahr. Planta (Berl) 159: 195–221Google Scholar
  65. Kollmann R, Schumacher W (1963) Über die Feinstruktur des Phloems von Metasequoia glytostroboides und seine Jahreszeitlichen Veränderungen. IV. Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta (Berl) 60: 360–389Google Scholar
  66. Kollmann R, Dörr I, Kleinig H (1970) Protein filaments; structural components of the phloem exsudate. I. Observations with Cucurbita and Nicotiana. Planta 95: 86–94CrossRefGoogle Scholar
  67. Kundu BC (1942) The anatomy of two Indian fibre plants, Cannabis and Corchorus, with special reference to the fibre distribution and development. Indian Bot Soc J 21: 93–128Google Scholar
  68. Kursanov AL, Kulikova AL, Turkina MW (1983) Actinlike protein from the phloem of Heracleum sosnowskyi. Physiol Veg 21: 353–359Google Scholar
  69. Laflèche D (1966) Ultrastructure et cytochimie des inclusions flagellées de Phaseolus vulgaris. J Microsc 5: 493–510Google Scholar
  70. Lawton DM, Johnson RPC (1976) A superhelical model for the ultrastructure of “P-protein tubules” in sieve elements of Nymphoides peltata. Cytobiologie 14: 1–14Google Scholar
  71. Lecomte H (1889) Contribution à l’étude du liber des Angiospermes. Ann Sci Nat Bot sér 7 10: 193–324Google Scholar
  72. Lee DR, Fensom DS, Costerton JW (1970) Particle movement in intact phloem in Heracleum. Can Natl Film Library, Ottawa, CanadaGoogle Scholar
  73. Lee DR, Arnold DC, Fensom DS (1971) Some microscopical observations of functioning sieve tubes of Heracleum, using Nomarski optics. J Exp Bot 22: 25–38CrossRefGoogle Scholar
  74. Liberman-Maxe M (1968) Différenciation des pores dans les cellule criblées de Polypodium vulgare (Polypodiacée). CR Acad Sci Paris 266 D: 767–769Google Scholar
  75. Liberman-Maxe M (1971) Étude cytologique de la différenciation des cellules criblées de Polypodium vulgare (Polypodiacée). J Microsc 12: 271–288Google Scholar
  76. Liberman-Maxe M (1974) Localisation ultrastructurale d’activités peroxydasiques dans la stèle de Polypodium vulgare (Polypodiacée). J Microsc 19: 169–182Google Scholar
  77. Liberman-Maxe M (1978) La paroi des cellules criblées dans le phloème d’une Fougère, le Polypode. Biol Cell 31: 201–210Google Scholar
  78. Liberman-Maxe M (1983) Étude ultrastructurale et cytochimique de la différenciation des tissus de la stèle d’une Fougère, le Polypodium vulgare L. Thèse Doct es-Sci Nat, Université P et M Curie, ParisGoogle Scholar
  79. Malek F, Baker DA (1977) Proton co-transport of sugars in phloem loading. Planta 145: 297–299CrossRefGoogle Scholar
  80. Magenot G (1929) Sur les phénomènes dits d’agrégation et la disposition des vacuoles dans les cellules conductrices. CR Acad Sci Paris 188: 1431–1434Google Scholar
  81. Mangin L (1890) Sur la callose, nouvelle substance fondamentale existant dans la membrane. CR Acad Sci Paris 110: 644–647Google Scholar
  82. Markham R, Frey S, Hills GJ (1963) Methods for the enhancement of image and accentuation of structure in electron microscopy. Virology 20: 88–102CrossRefGoogle Scholar
  83. Maxe M (1964) Aspects infrastructuraux des cellules criblées de Polypodium vulgare (Polypodiacée). CR Acad Sei Paris 258: 5701–5704Google Scholar
  84. Maxe M (1966) tude de la dégénérescence nucléaire dans les cellules criblées de Polypodium vulgare (Polypodiacée) CR Acad Sci Paris 262 D: 2211–2214Google Scholar
  85. Milburn JA (1971) An analysis of the response in phloem exudation on application of massage to Ricinus. Planta 100: 143–154CrossRefGoogle Scholar
  86. Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, JenaGoogle Scholar
  87. Murmanis L, Evert RF (1966) Some aspects of sieve cell ultrastructure in Pinus strobus. Am J Bot 53: 1065–1078CrossRefGoogle Scholar
  88. Nägeli CW (1858) Das Wachstum des Stammes und der Wurzel bei den Gefäßpflanzen und die Anordnung der Gefäßstränge im Stengel. Beitr Z Wiss Bot Heft 1: 1–156Google Scholar
  89. Newcomb EH (1967) A spiny vesicle in slim-producing cells of the bean root. J Cell Biol 35: C17–C22CrossRefPubMedGoogle Scholar
  90. Northcote DH, Wooding FBP (1966) Development of sieve tubes in Acer pseudoplatanus. Proc R Soc Lond B Biol Sei 163: 524–537CrossRefGoogle Scholar
  91. Parameswaran N (1971) Zur Feinstruktur der Assimilatleibahnen in der Nadel von Pinus silvestris. Cytobiology 3: 70–88Google Scholar
  92. Parthasarathy MV ( 1974 a, b) Ultrastructure of phloem in palms. I. Immature sieve elements and parenchymatic elements. Protoplasma 79: 59–91. II. Structure changes and fate of the organ¬elles in differentiating sieve elements. Ibid pp 93–125Google Scholar
  93. Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1: 17–36Google Scholar
  94. Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 20: 313–332CrossRefPubMedGoogle Scholar
  95. Salmon J (1946) Recherches cytologiques sur la différenciation des tubes criblés chez les Angiospermes. Rev Cytol Cytophysiol Vég 9: 55–168Google Scholar
  96. Sauter JJ (1974) Structure and physiology of Strasburger cells. Ber Dtsch Bot Ges 87: 327–336Google Scholar
  97. Sauter JJ (1980) The Strasburger cells. Equivalents of companion cells. Ber Dtsch Bot Ges 93: 29–42Google Scholar
  98. Sauter JJ, Braun HJ (1972) Cytochemische Untersuchung der Atmungsaktivität in den Strasburger Zellen von Larix und ihre Bedeutung für den Assimilattransport. Z Pflanzenphysiol 66: 440–458Google Scholar
  99. Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells (= albuminous cells) in the secondary phloem of Pinus nigra var austriaca ( Hoess) Badoux. Protoplasma 88: 31–49Google Scholar
  100. Schoch-Bodmer H, Huber P (1951) Das Spitzenwachstum der Bastfasern bei Linum usitatissimum und Linum perenne. Schweiz Bot Ges Ber 61: 377–404Google Scholar
  101. Srivastava LM, O’Brien TP (1966) On the ultrastructure of cambium and its vascular derivatives. II. Secondary phloem of Pinus strobus L. Protoplasma 61: 277–293CrossRefGoogle Scholar
  102. Strasburger E (1891) Über den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beiträge, Band 3. Fischer, JenaGoogle Scholar
  103. Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6: 987–1018Google Scholar
  104. Van Thieghem P (1882) Sur quelques points de l’anatomie des Cucurbitacées. Bull Soc Bot Fr 29: 277–283Google Scholar
  105. Ullrich W (1962) Beobachtungen über Kailoseablagerungen in transportierenden und nicht transportierenden Siebröhren. Planta (Berl) 59: 239–242CrossRefGoogle Scholar
  106. Vian B, Roland JC (1972) Différenciation des cytomembranes et renouvellement du plasmalemme dans les phénomènes de sécrétions végétales. J Microsc 13: 119–136Google Scholar
  107. Weber C, Franke WW, Kartenbeck J (1974) Structure and biochemistry of phloem isolated from Cucurbita maxima. Exp Cell Res 87: 79–106CrossRefPubMedGoogle Scholar
  108. Wilhelm K (1880) Beiträge zur Kenntnis des Siebröhrenapparates Dicotylerpflanzen. Engelmann LeipzigGoogle Scholar
  109. Wooding FBP (1966) The development of sieve elements of Pinus pinea. Planta 69: 230–243CrossRefGoogle Scholar
  110. Wooding FBP (1968) Fine structure of callus phloem in Pinus pinea. Planta 83: 99–110CrossRefGoogle Scholar
  111. Wooding FBP (1969) P-protein and microtubular system in Nicotiana callus phloem. Planta 85: 284–298CrossRefGoogle Scholar
  112. Zee SY, Chambers TC (1968) Fine structure of the primary root phloem of Pisum. Aust J Bot 16: 37–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Roger Buvat
    • 1
  1. 1.Faculté de Médecine de MarseilleLaboratoire de GénétiqueMarseille Cedex 5France

Personalised recommendations