Skip to main content

Abstract

The development of tissues concerned with the relationship and material exchange between the various parts of the plant may be considered as a consequence or as a prerequisite of the increasing complexity and size of the organs of ground plants growing in the atmosphere. Tissues most particularly differentiated for this function or “conducting tissues” are divided into two types: phloem and xylem or vascular tissue. The terms phloem and xylem, introduced by Naegeli (1858), appear to be the most convenient and their generalized use is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe LB, Crafts AS (1939) phloem of white pine and other coniferous species. Bot Gaz 100: 695–722

    Google Scholar 

  • Aldaba VC (1927) The structure and development of the cell wall in plants. I. Bast fibers of Boehmeria and Linum. Am J Bot 14: 16–24

    Article  Google Scholar 

  • Arsanto JP (1970) Infrastructures et différenciation du protophloème dans les jeunes racines du Sarrasin (Polygonum fagopyrum, Polygonacées). C R Acad Sei Paris 270 D: 3071–3074

    Google Scholar 

  • Arsanto JP (1977) Sur l’ultrastructure, la biogenèse et les changements conformationnels des constituants protéiques-P du phloème de trois Dicotylédones. C R Acad Sci Paris 285 D: 93–96

    Google Scholar 

  • Arsanto JP (1979) Ontogenèse du phloème, en particulier des protéines-P, chez quelques Dicotylédones. Thèse Dr es-Sci Univ Aix-Marseille I I

    Google Scholar 

  • Arsanto JP (1982) Observations on P-proteins in dicotyledons. Substructural and developmental features. Am J Bot 69: 1200–1212

    Article  CAS  Google Scholar 

  • Arsanto JP, Coulon J (1974) Détection radio-autographique et cytochimique des sites d’élaboration ou de transit des précurseurs polysaccharidiques pariétaux dans les cellules criblées en cours de différenciation du métaphloème caulinaire de deux Cucurbitacées voisines (Cucurbita pepo L. et Ecballium elaterium R.). CR Acad Sei Paris 278 D: 2775–2778

    Google Scholar 

  • Arsanto JP, Coulon J (1975) Application des méthodes cytochimique et radio-autographique de détection ultrastructurale des polysaccharides à l’étude de la différenciation des plateaux criblés du métaphloème caulinaire de deux Cucurbitacées voisines (Ecballium elaterium R. et Cucurbita pepo L.). CR Acad Sci Paris 280 D: 601–604

    Google Scholar 

  • Bailey IW (1923) Slime bodies of Robinia pseudoacacia. Phytopathology 13: 332–333

    Google Scholar 

  • Bailey IW, Swamy BGL (1949) The morphology and relationships of Austrobaileya. J Arnold Arbor Harv Univ 30: 211–266

    Google Scholar 

  • Behnke HD (1965) Über das Phloem der Dioscoreaceen unter besonderer Berücksichtigung ihrer Phloembecken. II. Elektronenoptische Untersuchungen zur Feinstruktur des Phloembeckens. Z Pflanzenphysiol 53: 214–244

    Google Scholar 

  • Behnke HD (1968) Zum Aufbau gitterartiger Membranstrukturen im Siebelementplasma von Dioscorea. Protoplasma 66: 287–310

    Article  Google Scholar 

  • Behnke HD (1971) The contents of the sieve-plate pores in Aristolochia. J Ultrastruct Res 36: 493–498

    Article  CAS  PubMed  Google Scholar 

  • Behnke HD (1972) Sieve-tube plastids in relation to angiosperm systematics. An attempt towards a classification by ultrastructural analysis. Bot Rev 38: 155–197 (références des multiples publications antérieures)

    Google Scholar 

  • Behnke HD (1973) Plastids in sieve elements and their companion cells. Investigations on monocotyledons, with special reference to Smilax and Tradescantia. Planta (Beri) 110: 321–328

    Article  Google Scholar 

  • Beyenbach J, Weber C, Kleinig H (1974) Sieve tube proteins from Cucurbita maxima. Planta 119: 113–124

    Article  CAS  Google Scholar 

  • Bouck GB, Cronshaw J (1965) The fine structure of differentiating sieve tube elements. J Cell Biol 25: 79–95

    Article  Google Scholar 

  • Burr FA, Evert RF (1973) Some aspects of sieve element structure and development in Selaginella Kraussiana. Protoplasma 78: 81–97

    Article  Google Scholar 

  • Buvat R (1963 a) Infrastructure et différenciation des cellules criblées de Cucurbita pepo. Evolution du tonoplaste et signification du contenu cellulaire final. CR Acad Sci Paris 256: 5193–5195

    Google Scholar 

  • Buvat R (1963 b) Les infrastructures et la différenciation des cellules criblées de Cucurbita pepo L. Port Acta Biol sér 7 A: 249–299

    Google Scholar 

  • Buvat R (1963 c) Infrastructure et différenciation des cellules criblées de Cucurbita pepo. Relations entre la membrane pectocellulosique et les membranes plasmiques du cytoplasme. C R Acad Sci Paris 257: 221–224

    Google Scholar 

  • Buvat R (1981) Vésicules “alvéolées” et vésicules “épineuses” dans les racines de l’Orge. CR Acad Sci Paris sér III 292: 825–832

    Google Scholar 

  • Buvat R, Robert G (1979) Activités golgiennes et origine des vacuoles dans les cellules criblées du protophloème de la racine de l’Orge (Hordeum sativum). Ann Sci Nat Bot Paris 13 e sér 1: 51–66

    Google Scholar 

  • Catesson AM (1966) Présence de phytoferritine dans le cambium et les tissus conducteurs de la tige de Sycomore, Acer pseudoplatanus. CR Acad Sci Paris 262 D: 1070–1073

    Google Scholar 

  • Catesson AM (1973) Observations cytochimiques sur les tubes cirblés de quelques Angiospermes. J Microsc 16: 95–104

    CAS  Google Scholar 

  • Catesson AM (1980) Localization of phloem oxidases. Ber Dtsch Bot Ges 93: 141–152

    CAS  Google Scholar 

  • Catesson AM, Czaninski Y (1967) Mise en évidence d’une activité phosphatasique acide dans le reticulum endoplasmique des tissus conducteurs de Robinier et de Sycomore. J Microscopie 6: 509–514

    Google Scholar 

  • Catesson AM, Liberman-Maxe M (1974) Les mitochondries des cellules criblées: réactions avec la 3-3’-diaminobenzidine. CR Acad Sci Paris 278 D: 2771–2773

    Google Scholar 

  • Crafts AS (1938) Translocation in plants. Plant Physiol 13: 791–814

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93: 123–139

    CAS  Google Scholar 

  • Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw J, Esau K (1968) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39

    Google Scholar 

  • Currier HB (1957) Callose substance in plant cells. Am J Bot 44: 478–488

    Article  Google Scholar 

  • Czaninski Y, Catesson AM (1970) Activités peroxydasiques d’origines diverses dans les cellules d’Acer pseudoplatanus ( Tissus conducteurs et cellules en culture ). J Microsc 9: 1089–1102

    Google Scholar 

  • Deshpande BP (1974) On the occurrence of spiny vesicles in the phloem of Salix. Ann Bot 38: 865–868

    Google Scholar 

  • Dunoyer de Segonzac G (1958) L’ontogénie du phloème chez Vanilla planifolia Andr. Rev Cytol Biol Vég 19: 153–184

    Google Scholar 

  • Engleman EM (1965) Sieve element of Impatiens sultanii. II. Developmental aspects. Ann Bot 29: 103–118

    Google Scholar 

  • Esau K (1943) Vascular differentiation in the vegetative shoot of Linum. III. The origin of the bast fibers. Am J Bot 30: 579–586

    Article  Google Scholar 

  • Esau K (1947) A study of some sieve-tube inclusions. Am J Bot 34: 224–233

    Article  Google Scholar 

  • Esau K (1961) Plants, viruses and insects. Harvard University Press, Cambridge Mass

    Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley New York

    Google Scholar 

  • Esau K, Cheadle VI (1958) Wall thickening in sieve elements Proc Natl Acad Sci USA 44: 546–553

    Article  CAS  Google Scholar 

  • Esau K, Cheadle VI (1965) Cytologic studies on phloem. University of California Press, Berkeley and Los Angeles 36: 253–344

    Google Scholar 

  • Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33: 26–35

    Article  CAS  PubMed  Google Scholar 

  • Esau K, Cronshaw J (1968 a) Plastids and mitochondria in the phloem of Cucurbita. Can J Bot 46: 877–880

    Google Scholar 

  • Esau K, Cronshaw J (1968 b) Endoplasmic reticulum in the sieve element of Cucurbita. J Ultrastruct Res 23: 1–14

    Google Scholar 

  • Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34: 144–158

    Article  CAS  PubMed  Google Scholar 

  • Eschrich W (1956) Kallose. Protoplasma 47: 487–530

    Article  Google Scholar 

  • Eschrich W (1963) Beziehungen zwischen dem Auftreten von Callose und der Feinstruktur des primären Phloems bei Cucurbita ficifolia. Planta (Berl) 59: 243–261

    Article  CAS  Google Scholar 

  • Evert RF (1984) Comparative structure of phloem. In: Contemporary problems in plant anatomy, pp 145–234. Academic Press

    Google Scholar 

  • Evert RF, Deshpande BP (1969) Electron microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Protoplasma 68: 403–432

    Article  Google Scholar 

  • Evert RF, Eichhorn SE (1974) Sieve element ultrastructure in Platycerium bifurcatum and some other polypodiaceous ferns: the refractive spherules. Planta 119: 319–334

    Article  Google Scholar 

  • Fensom DS (1972) A theory of translocation in phloem of Heracleum. Can J Bot 50: 479–497

    Article  CAS  Google Scholar 

  • Fisher DG, Evert RF (1979). Endoplasmic reticulum-dictyosome involvement in the origin of refractive spherules in sieve elements of Davallia fijiensis Hook. Ann Bot 43: 255–258

    Google Scholar 

  • Fisher DG, Evert RF (1982) Studies on the leaf of Amaranthus retroflexus ( Amaranthaceae) quantitative aspects and solute concentration in the phloem. Am J Bot 69: 1375–1388

    Google Scholar 

  • Friend DS, Farquhar MG (1967) Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol 35: 357–371

    Article  CAS  PubMed  Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34: 347–387

    Article  CAS  Google Scholar 

  • Gomori G (1952) Microscopic histochemisty; principles and practices. University of Chicago Press: Chicago

    Google Scholar 

  • Johnson RPC (1973) Filaments but no transcellular strands in sieve pores in freeze-etched, translocating phloem. Nature 244: 464–466

    Article  Google Scholar 

  • Jupin H, Catesson AM, Giraud G, Hauswirth N (1975) Chloroplastes à empilements granaires anormaux appauvris en photosystème I dans le phloeme de Robinia pseudoacacia et de Acer pseudoplatanus. Z Pflanzenphysiol 75: 95–106

    CAS  Google Scholar 

  • Kessler G (1958) Zur Charakterisierung der Siebröhrenkallose. Ber Schweiz Bot Ges 68: 5–43

    CAS  Google Scholar 

  • Kollmann R (1960) Untersuchungen über das Protoplasma der Siebröhren von Passiflora coerulea. I. Lichtoptische Untersuchungen. Planta (Berl) 54: 611–640

    Article  Google Scholar 

  • Kollmann R (1964) On the fine structure of the sieve element protoplast. Phytomorphology 14: 247–264

    Google Scholar 

  • Kollmann R, Schumacher W (1962) Über die Feinstruktur des Phloems von Metasequoia glytostroboides und seine Jahreszeitlichen Veränderungen. III. Die Reaktivierung der Phloemzellen im Frühjahr. Planta (Berl) 159: 195–221

    Google Scholar 

  • Kollmann R, Schumacher W (1963) Über die Feinstruktur des Phloems von Metasequoia glytostroboides und seine Jahreszeitlichen Veränderungen. IV. Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta (Berl) 60: 360–389

    Google Scholar 

  • Kollmann R, Dörr I, Kleinig H (1970) Protein filaments; structural components of the phloem exsudate. I. Observations with Cucurbita and Nicotiana. Planta 95: 86–94

    Article  CAS  Google Scholar 

  • Kundu BC (1942) The anatomy of two Indian fibre plants, Cannabis and Corchorus, with special reference to the fibre distribution and development. Indian Bot Soc J 21: 93–128

    Google Scholar 

  • Kursanov AL, Kulikova AL, Turkina MW (1983) Actinlike protein from the phloem of Heracleum sosnowskyi. Physiol Veg 21: 353–359

    CAS  Google Scholar 

  • Laflèche D (1966) Ultrastructure et cytochimie des inclusions flagellées de Phaseolus vulgaris. J Microsc 5: 493–510

    Google Scholar 

  • Lawton DM, Johnson RPC (1976) A superhelical model for the ultrastructure of “P-protein tubules” in sieve elements of Nymphoides peltata. Cytobiologie 14: 1–14

    CAS  Google Scholar 

  • Lecomte H (1889) Contribution à l’étude du liber des Angiospermes. Ann Sci Nat Bot sér 7 10: 193–324

    Google Scholar 

  • Lee DR, Fensom DS, Costerton JW (1970) Particle movement in intact phloem in Heracleum. Can Natl Film Library, Ottawa, Canada

    Google Scholar 

  • Lee DR, Arnold DC, Fensom DS (1971) Some microscopical observations of functioning sieve tubes of Heracleum, using Nomarski optics. J Exp Bot 22: 25–38

    Article  Google Scholar 

  • Liberman-Maxe M (1968) Différenciation des pores dans les cellule criblées de Polypodium vulgare (Polypodiacée). CR Acad Sci Paris 266 D: 767–769

    Google Scholar 

  • Liberman-Maxe M (1971) Étude cytologique de la différenciation des cellules criblées de Polypodium vulgare (Polypodiacée). J Microsc 12: 271–288

    Google Scholar 

  • Liberman-Maxe M (1974) Localisation ultrastructurale d’activités peroxydasiques dans la stèle de Polypodium vulgare (Polypodiacée). J Microsc 19: 169–182

    CAS  Google Scholar 

  • Liberman-Maxe M (1978) La paroi des cellules criblées dans le phloème d’une Fougère, le Polypode. Biol Cell 31: 201–210

    Google Scholar 

  • Liberman-Maxe M (1983) Étude ultrastructurale et cytochimique de la différenciation des tissus de la stèle d’une Fougère, le Polypodium vulgare L. Thèse Doct es-Sci Nat, Université P et M Curie, Paris

    Google Scholar 

  • Malek F, Baker DA (1977) Proton co-transport of sugars in phloem loading. Planta 145: 297–299

    Article  Google Scholar 

  • Magenot G (1929) Sur les phénomènes dits d’agrégation et la disposition des vacuoles dans les cellules conductrices. CR Acad Sci Paris 188: 1431–1434

    Google Scholar 

  • Mangin L (1890) Sur la callose, nouvelle substance fondamentale existant dans la membrane. CR Acad Sci Paris 110: 644–647

    Google Scholar 

  • Markham R, Frey S, Hills GJ (1963) Methods for the enhancement of image and accentuation of structure in electron microscopy. Virology 20: 88–102

    Article  Google Scholar 

  • Maxe M (1964) Aspects infrastructuraux des cellules criblées de Polypodium vulgare (Polypodiacée). CR Acad Sei Paris 258: 5701–5704

    Google Scholar 

  • Maxe M (1966) tude de la dégénérescence nucléaire dans les cellules criblées de Polypodium vulgare (Polypodiacée) CR Acad Sci Paris 262 D: 2211–2214

    Google Scholar 

  • Milburn JA (1971) An analysis of the response in phloem exudation on application of massage to Ricinus. Planta 100: 143–154

    Article  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, Jena

    Google Scholar 

  • Murmanis L, Evert RF (1966) Some aspects of sieve cell ultrastructure in Pinus strobus. Am J Bot 53: 1065–1078

    Article  Google Scholar 

  • Nägeli CW (1858) Das Wachstum des Stammes und der Wurzel bei den Gefäßpflanzen und die Anordnung der Gefäßstränge im Stengel. Beitr Z Wiss Bot Heft 1: 1–156

    Google Scholar 

  • Newcomb EH (1967) A spiny vesicle in slim-producing cells of the bean root. J Cell Biol 35: C17–C22

    Article  CAS  PubMed  Google Scholar 

  • Northcote DH, Wooding FBP (1966) Development of sieve tubes in Acer pseudoplatanus. Proc R Soc Lond B Biol Sei 163: 524–537

    Article  Google Scholar 

  • Parameswaran N (1971) Zur Feinstruktur der Assimilatleibahnen in der Nadel von Pinus silvestris. Cytobiology 3: 70–88

    Google Scholar 

  • Parthasarathy MV ( 1974 a, b) Ultrastructure of phloem in palms. I. Immature sieve elements and parenchymatic elements. Protoplasma 79: 59–91. II. Structure changes and fate of the organ¬elles in differentiating sieve elements. Ibid pp 93–125

    Google Scholar 

  • Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1: 17–36

    Google Scholar 

  • Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 20: 313–332

    Article  CAS  PubMed  Google Scholar 

  • Salmon J (1946) Recherches cytologiques sur la différenciation des tubes criblés chez les Angiospermes. Rev Cytol Cytophysiol Vég 9: 55–168

    Google Scholar 

  • Sauter JJ (1974) Structure and physiology of Strasburger cells. Ber Dtsch Bot Ges 87: 327–336

    Google Scholar 

  • Sauter JJ (1980) The Strasburger cells. Equivalents of companion cells. Ber Dtsch Bot Ges 93: 29–42

    CAS  Google Scholar 

  • Sauter JJ, Braun HJ (1972) Cytochemische Untersuchung der Atmungsaktivität in den Strasburger Zellen von Larix und ihre Bedeutung für den Assimilattransport. Z Pflanzenphysiol 66: 440–458

    Google Scholar 

  • Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells (= albuminous cells) in the secondary phloem of Pinus nigra var austriaca ( Hoess) Badoux. Protoplasma 88: 31–49

    Google Scholar 

  • Schoch-Bodmer H, Huber P (1951) Das Spitzenwachstum der Bastfasern bei Linum usitatissimum und Linum perenne. Schweiz Bot Ges Ber 61: 377–404

    Google Scholar 

  • Srivastava LM, O’Brien TP (1966) On the ultrastructure of cambium and its vascular derivatives. II. Secondary phloem of Pinus strobus L. Protoplasma 61: 277–293

    Article  Google Scholar 

  • Strasburger E (1891) Über den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beiträge, Band 3. Fischer, Jena

    Google Scholar 

  • Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6: 987–1018

    CAS  Google Scholar 

  • Van Thieghem P (1882) Sur quelques points de l’anatomie des Cucurbitacées. Bull Soc Bot Fr 29: 277–283

    Google Scholar 

  • Ullrich W (1962) Beobachtungen über Kailoseablagerungen in transportierenden und nicht transportierenden Siebröhren. Planta (Berl) 59: 239–242

    Article  CAS  Google Scholar 

  • Vian B, Roland JC (1972) Différenciation des cytomembranes et renouvellement du plasmalemme dans les phénomènes de sécrétions végétales. J Microsc 13: 119–136

    Google Scholar 

  • Weber C, Franke WW, Kartenbeck J (1974) Structure and biochemistry of phloem isolated from Cucurbita maxima. Exp Cell Res 87: 79–106

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm K (1880) Beiträge zur Kenntnis des Siebröhrenapparates Dicotylerpflanzen. Engelmann Leipzig

    Google Scholar 

  • Wooding FBP (1966) The development of sieve elements of Pinus pinea. Planta 69: 230–243

    Article  Google Scholar 

  • Wooding FBP (1968) Fine structure of callus phloem in Pinus pinea. Planta 83: 99–110

    Article  Google Scholar 

  • Wooding FBP (1969) P-protein and microtubular system in Nicotiana callus phloem. Planta 85: 284–298

    Article  CAS  Google Scholar 

  • Zee SY, Chambers TC (1968) Fine structure of the primary root phloem of Pisum. Aust J Bot 16: 37–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buvat, R. (1989). Phloem. In: Ontogeny, Cell Differentiation, and Structure of Vascular Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73635-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73635-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73637-7

  • Online ISBN: 978-3-642-73635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics