Skip to main content

Estimation of Acute Infarct Size In Vivo

  • Conference paper
Limitation of Infarct Size
  • 28 Accesses

Abstract

The interest in calculating acute infarct mass following occlusion of a coronary artery originates mainly from two sources:

  1. 1.

    Acute infarct mass is related not only to the short-term (hospital) prognosis, but also to the long-term course, since pump failure and severe cardiac arrhythmias develop, depending on the size of the infarction [1, 2].

  2. 2.

    The quantification of an acute infarction may offer the possibility to evaluate the effect of therapeutic measures like thrombolysis, angioplasty, aortocoro-nary bypass surgery, or others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sobel BE, Bresnahan B, Shell WE, Yoder RD (1972) Estimation of infarct size and its relation to prognosis. Circulation 46: 640–648

    PubMed  CAS  Google Scholar 

  2. Geltman EM, Ehsani AA, Campbell ML, Schechtmann K, Robert R, Sobel BE (1979) The influence of location and extent of myocardial infarction on long-term ventricular dysrhythmia and mortality. Circulation 60: 805–814

    PubMed  CAS  Google Scholar 

  3. Bleifeld W, Mathey DG, Hanrath P, Buss H, Effert S (1977) Infarct size estimated from serial CK in relation to left ventricular hemodynamics. Circulation 55 (2): 303

    PubMed  CAS  Google Scholar 

  4. Shell WE, Kjekshus JK, Sobel BE (1971) Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine Phosphokinase activity. J Clin Invest 50: 2614–2625

    Article  PubMed  CAS  Google Scholar 

  5. Mathey DG, Bleifeld W, Schofer J (1984) Intrakoronare Thrombolyse - eine bereits gesicherte Therapie des akuten Herzinfarktes? Dtsch Med Wochenschr 109: 678–682

    Article  PubMed  CAS  Google Scholar 

  6. Grande P, Fischer Hansen B, Christiansen C, Naestoft J (1982) Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation 65: 756–764

    Article  PubMed  CAS  Google Scholar 

  7. Hackle DB et al. (1984) Comparison of enzymatic and anatomic estimates of myocardial infarct size in man. Circulation 70: 824–835

    Article  Google Scholar 

  8. Kupper W, Hanrath P, Bleifeld W, Effert S (1978) Berechnung der akuten Infarktgröße aus den Serumkonzentrationen des CK-MB-Isoenzyms. Dtsch Med Wochenschr 103: 550–556

    Article  PubMed  CAS  Google Scholar 

  9. Mathey DG, Schofer J, Sheehan FH, Becker H, Tilsner V, Dodge HT (1985) Intravenous urokinase in acute myocardial infarction. Am J Cardiol 55: 878–882

    Article  PubMed  CAS  Google Scholar 

  10. Sheehan FH, Bolson EL, Dodge HT, Mittens S (1984) Centerline method - comparison with other methods for measuring regional left ventricular motion. In: Sigwart JLF, Heintzen PH (eds) Ventricular wall motion. Thieme, Stuttgart, pp 139–149

    Google Scholar 

  11. Roger WJ, McDaniel HG, Smith LR, Mantle JA, Russell RO, Rackley CE (1977) Correlation of angiographic estimates of myocardial infarct size and accumulated release of creatine kinase MB isoenzyme in man. Circulation 56: 199–205

    Google Scholar 

  12. Bleifeld W (1979) Pathophysiologic des Infarktes - Hämodynamik. Intensivmed 16: 68–73

    Google Scholar 

  13. Sheehan F, Bolson EL, Dodge HT, Mathey DG, Schofer J, Hok-Wai Woo MS (1986) Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 74 (2): 293–305

    Article  PubMed  CAS  Google Scholar 

  14. Bolson EL, Kliman S, Sheehan F, Dodge HT (1980) Left ventricular segmental wall motion - a new method using local direction information. Comput Cardiol 245–248

    Google Scholar 

  15. Norris RM, Clarke ED, Sammel NL, Smitz WM, Williams B (1978) Protective effect of propranolol in threatened myocardial infarction. Lancet 2: 907–909

    Article  PubMed  CAS  Google Scholar 

  16. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66: 1146–1149

    Article  PubMed  CAS  Google Scholar 

  17. Croft C, Rude RE, Lewis SE, Parkey RW, Poole WK, Parker C, Fox N, Roberts R, Strauss HW, Thomas LJ, Raabe DS Jr, Sobel BE, Gold HK, Stone PH, Braunwald E, Willerson JT, Milis Study Group (1984) Comparison of left ventricular function and infarct size in patients with and without persistently positive technetium-90 m pyrophosphate myocardial scintigrams after myocardial infarction: analysis of 357 patients. Am J Cardiol 53: 421–428

    Google Scholar 

  18. Maroko P, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusion. Circulation 43: 67–81

    PubMed  CAS  Google Scholar 

  19. Kupper W, Bleifeld W, Keindel T, v. Essen R (1977) Precordial mapping in early myocardial infarction. In: Pachinger O, Probst T (eds) Die ersten 24 Stunden des Herzinfarktes. Witzstrock, Baden-Baden New York, pp 86–89

    Google Scholar 

  20. Selvester RH, Solomon JC (1980) Infarct size and QRS changes (QRS criteria applicable to computer diagnostic programs). In: Tolan GD, Pryor TA (eds) Computed interpretation of electrocardiogram. Proceedings of the 1980 engineering foundation conference. Engineering Foundation, New York, pp 69–77

    Google Scholar 

  21. Ideker RE, Wagner GS, Ruth WK, Alonson DR, Bishop SP, Bloor CM, Fallon JT, Gottlieb GJ, Hackel DB, Phillips HR, Reimer KA, Roark SF, Rogers WJ, Savage RM, White RD, Selvester RH (1982) Evaluation of a QRS scoring system for estimating myocardial infarct size. II. Correlation with quantitative anatomic findings for anterior infarcts. Am J Cardiol 49: 1604–1614

    Google Scholar 

  22. Roark SF, Ideker RE, Wagner GS, Alonso DR, Bishop SP, Bloor CM, Bramlet DA, Edwards JE, Fallon JT, Gottlieb GJ, Hackel DB, Phillips HR, Reimer KA, Rogers WJ, Ruth WK, Savage RM, White RD, Selvester RH (1983) Evaluation of a QRS scoring system for estimating myocardial infarct size. III. Correlation with quantitative anatomic findings for inferior infarcts. Am J Cardiol 51: 382–389

    Article  PubMed  CAS  Google Scholar 

  23. Cowan MJ, Reichenbach DD, Brude RA, Fisher L (1982) Estimation of myocardial infarct size by digital computer analysis of the VCG. J Electrocardiol 15: 307–315

    Article  PubMed  CAS  Google Scholar 

  24. Cowan MJ, Bruce RA, Reichenbach DD (1984) Estimation of inferobasal myocardial infarct size by late activation abnormalities of the QRS complex. Am J Cardiol 54: 726–732

    Article  PubMed  CAS  Google Scholar 

  25. Cowan MJ, Bruce RA, Reichenbach DD (1986) Validation of a computerized QRS criterion for estimating myocardial infarction size and correlation with quantitative morphologic measurements. Am J Cardiol 57: 60–65

    Article  PubMed  CAS  Google Scholar 

  26. Hirsowitz GS, Lakier JB, Marks DS, Lee TG, Goldberg AD, Goldstein S (1983) Comparison of radionuclide and enzymatic estimate of infarct size in patients with acute myocardial infarction. J Am Coll Cardiol 1: 1405–1412

    Article  PubMed  CAS  Google Scholar 

  27. Corbett JR, Lewis SE, Wolfe CL, Jansen DE, Lewis M, Rellas JS, Parkey RW, Rude RE, Buja M, Willerson JT (1984) Measurement of myocardial infarct size by technetium pyrophosphate single-photon tomography. Am J Cardiol 54: 1231–1236

    Article  PubMed  CAS  Google Scholar 

  28. Tamaki S, Murakami T, Kadota K, Kambara H, Yui Y, Nakajima H, Suzuki Y, Nohara R, Takatsu Y, Kawai C, Tamaki N, Mukai T, Torizuka K (1983) Effects of coronary artery reperfusion on relation between creatine kinase-MB release and infarct size estimated by myocardial emission tomography with thallium-201 in man. J Am Coll Cardiol 2: 1031–1038

    Article  PubMed  CAS  Google Scholar 

  29. Schofer J, Spielmann R, Lampe M, Mathey DG (1987) Infarktgröße nach intrakoronarer Thrombolyse: Ventrikelfunktion versus Thallium-Emissionscomputertomographie. Z Kar- diol 76 (Suppl 1 ): 109: 395 (Abstract)

    Google Scholar 

  30. Liebermann AN, Weiss JL, Judgdutt BI, Becker LC, Bulkley BH, Garrison JG, Hutchins GM, Kallmann CA (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63: 739–746

    Article  Google Scholar 

  31. Higgins CB, Lanzer B, Stark D, Botvinik E, Schiller NB, Lipton MJ, Crooks LE, Kaufman L (1985) Assessment of cardiac anatomy using nuclear magnetic resonance imaging. J Am Coll Cardiol 5: 775

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bleifeld, W., Müller-Hansen, S., Mathey, D.G., Schofer, J. (1989). Estimation of Acute Infarct Size In Vivo. In: Schmutzler, H., Rutsch, W., Dougherty, F.C. (eds) Limitation of Infarct Size. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73585-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73585-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19148-3

  • Online ISBN: 978-3-642-73585-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics