Crops II pp 386-404 | Cite as

Quinoa (Chenopodium quinoa Willd.): A Potential New Crop

  • M. Burnouf-Radosevich
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 6)


Quinoa (Chenopodium quinoa, Fig. 1), although being a dicotyledonous plant belonging to the family Chenopodiaceae, is usually considered as a cereal because of its dietary use. Indeed, the seeds can be milled into flour to make breads and soups, as well as pasta. Quinoa originates from the Andean region of South America and was an important crop at the time of the Inca civilization (Weber1978). With the arrival of the Spaniards, substitutes like the Graminae were introduced and quinoa was neglected until a few decades ago. Quinoa has recently awakened the interest of scientists and agronomists as a potential “new” crop; mainly because of its high nutritive value and agronomic characteristics. In fact, recent data show that quinoa seeds contain approximately 14% proteins, a protein content as high as 20% being reported for some improved varieties. An interesting feature is the high percentage of essential amino acids which may reach 48% (Gorbitz and Luna de la Fuente 1965) while of special interest is the lysine content (6%) which is, on average, three times that of wheat kernels. In animal experiments, the overall nutritional quality of quinoa seeds was similar to that of milk casein (Mahoney et al. 1975). The leaves contain an average of 20% proteins of well-balanced amino acid composition. Also, food preparations with a protein concentrate from quinoa leaves, regardless of the weather conditions during growing, are of excellent nutritional value for human consumption (Ostrowski- Meissner et al. 1980). In addition, quinoa plants produce vitamin E and vitamins of the B complex as well as some essential minerals (de Bruin 1963). From the agronomic point of view, C. quinoa shows in its native land a good adaptation to cold temperatures and dry conditions. This makes quinoa a potentially suitable species to be introduced in semi-desert areas of the world and to be used there as a food source. Its needs for water are very low: 300 mm of water per year may be enough to support quinoa development. Seed yields average 1000 to 3000 kg/ha according to the varieties in normal growth conditions (Rea et al. 1979).


Saponin Content Chenopodium Quinoa Chenopodium Rubrum Shoot Multiplication Medium Epicotyl Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar RH, Guevara L, Alvarez JO (1979) Un nuevo método para la determinación cuantitativa de saponinas y su aplicación a diversas variedades de quinua peruana. Acta Ci Venez 30:167–171Google Scholar
  2. Arias J (1980) El método de la descendencia de una sola semilla aplicado como contribución de la investigación agronómica al desarollo del agricultor. In: I Reunión sobre genética y fitomejoramien- to de la quinoa, IICA-CIID, Univ Nací Tec Altiplano, Puno, Perú, March 14–16Google Scholar
  3. Bajaj YPS (1986) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  4. Berlin J, Sieg S, Strack D, Bokern M, Harms H (1986) Production of betalains by suspension cultures of Chenopodium rubrum L. Plant Cell Tissue Org Cult 5:163–174CrossRefGoogle Scholar
  5. Birk Y, Peri I (1980) Saponins. In: Liener IE (ed) Toxic constituents of plant foodstuffs. Academic Press, London New York, pp 161–182Google Scholar
  6. Blanco O (1980) Selección de objectivos en el mejoramiento genético de la quinoa. In: I Reunión sobre genética y fitomejoramiento de la quinoa, IICA-CIID, Univ Nací Tec Altiplano, Puno, Perú, March 14–16Google Scholar
  7. Boiteau P, Pasich B, Ratsimananga AR (1964) Les Triterpénoïdes en physiologie végétale et animale. Gauthiers-Villars, ParisGoogle Scholar
  8. Burnouf-Radosevich M (1982) Contribution à l’étude duChenopodium quinoa Willd.: Analyse des saponines triterpéniques dans la plante et dans des tissus cultivés in vitro; multiplication végétative par culture d’apex. Thèse D, Univ Sci Tech Lille, FranceGoogle Scholar
  9. Burnouf-Radosevich M, Delfel NE (1984) High-performance liquid chromatography of oleanane-type triterpenes. J Chromatogr 292:403–409CrossRefGoogle Scholar
  10. Burnouf-Radosevich M, Delfel NE (1986) High-performance liquid chromatography of triterpene saponins. J Chromatogr 368:433–438CrossRefGoogle Scholar
  11. Burnouf-Radosevich M, Paupardin C (1983) Elaboration de saponines triterpéniques par des tissus de Chenopodium quinoa Willd. cultivés in vitro. C R Acad Sci Paris 296:429–432Google Scholar
  12. Burnouf-Radosevich M, Paupardin C (1985) Vegetative propagation of Chenopodium quinoa by shoot tip culture. Am J Bot 72:278–283CrossRefGoogle Scholar
  13. Burnouf-Radosevich M, Burnouf T, Delfel NE (1983) Saponin content and protein composition in Chenopodium quinoa. Cereal foods world (Abstr). AACC 68th Annu Meet Kansas City, MO, Oct 30-Nov 3Google Scholar
  14. Burnouf-Radosevich M, Delfel NE, England R (1985) Gas chromatography-mass spectrometry of oleanane- and ursane-type triterpenes. Application to Chenopodium quinoa triterpenes. Phytochemistry 24:2063–2066CrossRefGoogle Scholar
  15. Chaleff RS, Keil RL (1981) Genetic and physiological variability among cultured cells and regenerated plants of Nicotiana tabacum. Mol Gen Genet 181:254–258CrossRefGoogle Scholar
  16. Chandel RS, Rastogi RP (1980) Triterpenoid saponins and sapogenins: 1973–1978. Phytochemistry 19:1889–1908CrossRefGoogle Scholar
  17. Cheyne YA, Dale T (1980) Shoot tip culture in forage legumes. Plant Sci Lett 19:303–309CrossRefGoogle Scholar
  18. De Bruin A (1963) Investigation of the food value of Quinua and Canihua seed. J Food Sci 29:872–876CrossRefGoogle Scholar
  19. Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue expiants excised from mature coconut palms (Cocos nucífera) and cultured in vitro. Physiol Plant 36:23–28CrossRefGoogle Scholar
  20. Espinóla G (1980) Evaluaciones en el germoplasma de quinoa en Bolivia. In: I Reunión sobre genética y fitomejoramiento de la quinua, IICA-CIID, Univ Nací Tec Altiplano, Puno, Perú, March 14–16Google Scholar
  21. Flores HE, Thier A, Galston AW (1982) In vitro culture of grain and vegetable amaranths (Amaranthus spp.). Am J Bot 69:1049–1054CrossRefGoogle Scholar
  22. Fukami T, Hildebrandt AC (1967) Growth and chlorophyll formation in edible green plant callus tissues in vitro on media with limited sugar supplements. Bot Mag Tokyo 80:199–212Google Scholar
  23. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cells Res 50:151–158CrossRefGoogle Scholar
  24. Gautheret RJ (1959) La culture des tissus végétaux. Techniques et réalisations. Masson, ParisGoogle Scholar
  25. Gonzales R (1917) Investigation of Chenopodium quinoa. Exp Stn Res 39:610, p 45, Chem Abstr 13:1083 (1919)Google Scholar
  26. Gorbitz A, Luna de la Fuente R (1965) La quinua en el Perú. Ministerio de Agricultura, Lima. Servicio de investigación y promoción agraria. Bol Tec 54:19Google Scholar
  27. Husemann W, Barz W (1977) Photoautotrophic growth and photosynthesis in cell suspension cultures of Chenopodium rubrum. Physiol Plant 40:77–81CrossRefGoogle Scholar
  28. Hussey G, Hepher A (1978) Clonal propagation of sugar beet plants and the formation of polyploids by tissue culture. Ann Bot (London) 42:477–479Google Scholar
  29. Lescano JL (1980) Avances en la genética de la quinua. In: I Reunión sobre genética y fitomejoramiento de la quinua, IICA-CIID, Univ Nací Tec Altiplano, Puno, Perú, March 14–16Google Scholar
  30. Mahoney AW, Lopez JG, Hendricks DG (1975) An evaluation of the protein quality of quinoa. J Agr Food Chem 23:190–193CrossRefGoogle Scholar
  31. Murashige T (1978) Principles of rapid propagation. In: Hughes KW, Henke R, Constantin M (ed) Propagation of higher plants through tissue culture. Tech Inf Center, US Dep Commerce, Springfield, Va, pp 14–24Google Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  33. Neskovic M, Radojevic L (1973) The growth of and morphogenesis in tissue cultures ofSpinacia oleracea L. Bull Inst Jardin Bot Univ Beograd 8:35–37Google Scholar
  34. Nitsch C (1977) Culture of isolated microspores. In: Reinert J, Bajaj YPS (ed) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 269–278Google Scholar
  35. Ostrowski-Meissner HT, Carlsson R, Traecaardh C (1980) Isolation and purification of proteins from green vegetation for direct human consumption. In: Linko P, Malkki Y, Olkku J (ed) Food process Engeneering. Proc Int Congr, London, pp 864–870Google Scholar
  36. Pedersen NW, Wang LC (1971) Modification of saponin content of alfalfa through selection. Crop Sci 11:833–835CrossRefGoogle Scholar
  37. Rea J, Tapia M, Mujica A (1979) Prácticas agronómicas. In: Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica A (eds) Quinua y Kañiwa, cultivos andinos. IICA, Bogotá, Colombia, pp 83–120Google Scholar
  38. Romberger JA, Tabor CA (1971) ThePicea abies shoot apical meristem in culture I. Agar and autoclaving effects. Am J Bot 58:131CrossRefGoogle Scholar
  39. Salas B, Otazu V, Vilca A (1977) Enfermedades de la quinoa. In: Curso de Quinoa. IICA, Univ Nacl Tee Altiplano, Puno, Peru, April 11–16Google Scholar
  40. Shibata S (1977) Saponins with biological and pharmacological activity. In: Wagner H, Wolff P (ed) New natural products and plant drugs with pharmacological, biological or therapeutical activity. Springer, Berlin Heidelberg New York, pp 177–196CrossRefGoogle Scholar
  41. Shukla P, Hiruki C (1975) Ultrastructural changes in leaf cells of Chenopodium quinoa infected with potato virus S. Physiol Plant Pathol 7:189–194CrossRefGoogle Scholar
  42. Simmonds NW (1965) The grain chenopods of the tropical american highlands. Econ Bot 19:223–235CrossRefGoogle Scholar
  43. Simmonds NW (ed) (1979) Special techniques. In: Principles of crop improvement. Longman, London New York, pp 303–311Google Scholar
  44. Tapia ME, Mujica A, Canahua A (1980) Origen, distribución geográfica y sistemas de producción de la quinua. In: I Reunión sobre genética y fitomejoramiento de la quinua IICA-CIID, Univ Nací Tec Altiplano, Puno, Perú, March 14–16Google Scholar
  45. Weber EJ (1978) The Inca’s ancient answer to food shortage. Nature (London) 272:486CrossRefGoogle Scholar
  46. Wochok ZS, Sluis CJ (1980) Gibberellic acid promotes Atriplex shoot multiplication and elongation. Plant Sci Lett 17:363–369CrossRefGoogle Scholar
  47. Zanabria E, Mujica A (1977) Plagas de la quinoa en Puno. In: Curso de quinoa. IICA, Univ Nacl Tec Altiplano, Puno, Peru, April 11–16Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Burnouf-Radosevich
    • 1
  1. 1.Centre Régional de Transfusion SanguineLaboratoire Recherche et DéveloppementLille CedexFrance

Personalised recommendations