Advertisement

Analysis of Tritium in Metals

  • Rainer Lässer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 9)

Abstract

To analyze tritium in metals, almost all conventional techniques employed for the study of the stable hydrogen isotopes in metals can be used: Secondary Ion Mass Spectroscopy (SIMS) [4.1], Auger spectroscopy [4.2], Nuclear Magnetic Resonance (NMR) [4.3], measurements of the length or lattice parameter change in comparison with pure metals [4.4], weight changes [4.5], depth profiling [4.6] using the nuclear reaction 3H(d, n)4He, channeling, neutron spectroscopy [4.7], neutron radiography [4.8], electron microscopy, etc. Only certain nuclear physical methods specific to tritium will be described in this chapter. Very small amounts of tritium can be detected with techniques using proportional counters and ionisation chambers, liquid scintillation detectors and photographic emulsions [4.9, 10]. A simple method to determine large amounts of tritium in a metal bed is the measurement of the temperature increase in the bed due to the energy created by the dissolved tritium. The heat output of 1 g tritium is 0.324 W.

Keywords

Nuclear Magnetic Resonance Tritium Concentration Neutron Radiography Nuclear Reaction Analysis Bremsstrahlung Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    H. Züchner, B. Hüser. In Gase in Metallen, ed. by D. Hirschfeld (Deutsche Gesellschaft für Metallkunde, E.V. 1984) p.53, ISBN 3-88355-086-8Google Scholar
  2. 4.1a
    H. Züchner, B. Hüser, P. Kock: Z. Analytische Chem. 329, 169 (1987)CrossRefGoogle Scholar
  3. 4.1b
    B. Ladna, C.M. Loxton, H.K. Birnbaum: Acta Metall. 34, 899 (1986)CrossRefGoogle Scholar
  4. 4.2
    M.E. Malinowski: J. Vacuum Sci. Technol. 15, 39 (1978)ADSGoogle Scholar
  5. 4.2a
    B.C. Lamartine, T.W. Haas, J.S. Solomon: Appl. Surf. Sci. 4, 537 (1980)CrossRefGoogle Scholar
  6. 4.2b
    M.E. Malinowski: J. Vacuum Sci. Technol. 19, 120 (1981)CrossRefADSGoogle Scholar
  7. 4.2c
    P. Bracconi, R. Lässer: Appl. Surf. Sci. 28, 204 (1987)CrossRefADSGoogle Scholar
  8. 4.2d
    P. Bracconi, E. Pörschke, R. Lässer: Appl. Surf. Sci. 32, 392 (1988)CrossRefADSGoogle Scholar
  9. 4.3
    R.M. Cotts: In Hydrogen in Metals I, ed. by G. Alefeld, J. Völkl, Topics Appl. Phys. Vol.28 (Springer, Berlin, Heidelberg 1978) p.227Google Scholar
  10. 4.3a
    R.C. Bowman, Jr.: Nature 271, 531 (1978)CrossRefADSGoogle Scholar
  11. 4.3b
    P.C. Souers, T.A. Jolly, C.F. Cline: J. Phys. Chem. Solids 28, 1717 (1967)CrossRefADSGoogle Scholar
  12. 4.4
    H. Peisl: In Hydrogen in Metals, ed. by G. Alefeld, J. Völkl, Topics Appl. Phys. Vol.28 (Springer, Berlin, Heidelberg 1978) p.52 and references thereinGoogle Scholar
  13. 4.5
    R. Feenstra: Dissertation, Vrije Universiteit, Amsterdam (1985)Google Scholar
  14. 4.5a
    R. Feenstra, R. Griessen, D.G. de Groot: J. Phys. F 16, 1933 (1986)CrossRefADSGoogle Scholar
  15. 4.5b
    R. Feenstra, D.G. de Groot, J.H. Rector, E. Salomons, R. Griessen: J. Phys. F 16, 1953 (1986)CrossRefADSGoogle Scholar
  16. 4.6
    S. Okuda, R. Taniguchi, M. Fujishiro, Y. Satoh, E. Hiraoka; J. Appl. Phys. 54, 6790 (1983)CrossRefADSGoogle Scholar
  17. 4.6a
    ibid 128–129, 725 (1984)Google Scholar
  18. 4.6b
    J.A. Sawicki: J. Nucl. Mater. 141–143, 327 (1986);CrossRefGoogle Scholar
  19. 4.6c
    J.A. Sawicki: Nucl. Instru. Meth. Phys. Res. B 23, 521 (1987)CrossRefADSGoogle Scholar
  20. 4.6d
    L.G. Earwaker, J.B.A. England, D.J. Goldie: Nucl. Instru. Meth. in Physics Research B24/25, 711 (1987)CrossRefGoogle Scholar
  21. 4.7
    T. Springen Quasielestic Neutron Scattering for the Investigation of Diffuse Motions in Solid and Liquids, Springer Tracts Mod. Phys., Vol.64 (Springer, Berlin, Heidelberg 1972)Google Scholar
  22. 4.7a
    T. Springen In Hydrogen in Metals I, ed. by G. Alefeld, J. Völkl, Topics Appl. Phys. Vol.28 (Springer, Berlin, Heidelberg 1978) p.75Google Scholar
  23. 4.7b
    D.G. Hunt, D.K. Ross: J. Less Common Metals 49, 169 (1976)CrossRefGoogle Scholar
  24. 4.7c
    D. Richter: In Exotic Atoms ’79, ed. by K. Crowe, J. Duclos, G. Fiorentini, G. Torelli (Plenum, New York 1980) p.245Google Scholar
  25. 4.7d
    R. Hempelmann: J. Less Common Metals 101, 69 (1984)CrossRefGoogle Scholar
  26. 4.8
    H. Rauch, A. Zeilinger: Atomic Energy Rev. 15, 249 (1977) (IAEA Vienna 1977)Google Scholar
  27. 4.9
    C.A. Colmenares: Nucl. Instrum. Meth. 114, 269 (1974)CrossRefADSGoogle Scholar
  28. 4.9a
    M. Sugisaki, K. Idemitsu, F. Furuya: Radiochem. Radioanal. Lett. 51, 293 (1982)Google Scholar
  29. 4.9b
    G.F. Knoll: Radiation Detection and Measurement (Wiley, London 1979)Google Scholar
  30. 4.9c
    T. Aoyama, H. Miyai, T. Watanabe: Nucl. Instr. Meth. Phys. Res. 221, 644 (1984)CrossRefGoogle Scholar
  31. 4.9d
    K.Y. Wong, R.G.C. McElroy: Fusion Technology 8, 2082 (1985)Google Scholar
  32. 4.9e
    M. Matsuyama, K. Ichimura, K. Ashida, K. Watanabe, H. Sato: Fusion Technology 8, 2461 (1985)Google Scholar
  33. 4.10
    G.R. Caskey, Jr.: In Advanced Techniques for Characterizing Hydrogen in Metals, ed. by N.F. Fiore, B.J. Berkowitz (Society of AIME, Louisville, Kentucky 1981)Google Scholar
  34. 4.11
    J.W. Pyper, E.M. Kelly, J.G. Magistad, R.T. Tsugawa, P.E. Roberts, P.C. Souers: UCRL-52391, Lawrence Livermore Laboratory (1978)Google Scholar
  35. 4.11a
    R.E. Ellefson, W.E. Moddeman, H.F. Dylla: J. Vac. Sci. Technol. 18, 1062 (1981)CrossRefADSGoogle Scholar
  36. 4.11b
    J. von Seggern, S. Berger, M. Erdweg, W.O. Hofer: J. Vac. Sci. Technol. A 2, 1516 (1984)CrossRefADSGoogle Scholar
  37. 4.12
    M. Saeki, T. Hirabayashi, Y. Aratono, T. Hasegawa, E. Tachikawa: J. Nucl. Sci. Technol. 20, 762 (1983)CrossRefGoogle Scholar
  38. 4.12a
    J. King: J. Phys. Chem. 67, 1397 (1963)CrossRefGoogle Scholar
  39. 4.12b
    B. Genty, R. Schott: Analytical Chemistry 42, 7 (1970)CrossRefGoogle Scholar
  40. 4.12c
    M.L. Conti, M. Lesimple: J. Chromatogr. 29, 32 (1967)CrossRefGoogle Scholar
  41. 4.12d
    T. Schober, B. Dieker: Rev. Sci. Instrum. 58, 1116 (1987)CrossRefADSGoogle Scholar
  42. 4.13
    R.E. Setchell, D.K. Otteson: Report SAND 74-8644, Sandia Laboratories, Livermore, CA 94550 (1975)Google Scholar
  43. 4.13a
    P.C. Souers (ed.): Hydrogen Properties for Fusion Energy (Univ. California, Berkeley 1986)Google Scholar
  44. 4.14
    R. Lässer, K. Bickmann: J. Nucl. Mater. 126, 234 (1984)CrossRefGoogle Scholar
  45. 4.15
    C.W. Pennington, T.S. Elleman, K. Verghese: Nuclear Technology 22, 405 (1974)Google Scholar
  46. 4.15a
    T.S. Ellemann, K. Verghese: J. Nucl. Materials 53, 299 (1974)CrossRefADSGoogle Scholar
  47. 4.15b
    R. Lässer, K. Bickmann: J. Nucl. Mater. 132, 244 (1985)CrossRefGoogle Scholar
  48. 4.16
    R. Lässer, H. Wenzl: In Proc.12. Symposium on Fusion Technology 1982, Vol.II (Pergamon, Oxford 1983) p.783Google Scholar
  49. 4.17
    R. Lässer: Z. Phys. Chem. N.F. 143, 23 (1985)CrossRefGoogle Scholar
  50. 4.18
    V.A. Lubimov, E.G. Novikov, V.Z. Nozik, E.F. Tretyakov, V.S. Kosik: Phys. Lett. 94B, 266 (1980)ADSGoogle Scholar
  51. 4.18a
    I.G. Kaplan, V.N. Smutnyi, G.V. Smelov: Sov. Phys. JETP 57, 483 (1983)Google Scholar
  52. 4.18b
    T. Kirsten, H. Richter, E. Jessberger: Phys. Rev. Lett. 50, 474 (1983)CrossRefADSGoogle Scholar
  53. 4.18c
    W. Kündig: Spektrum der Wissenschaft (1986) p.12;Google Scholar
  54. 4.18d
    W. Kündig: Phys. Rev. B 42, 380 (1986)Google Scholar
  55. 4.18e
    G.L. Borchert, D. Gotta, H.R. Koch, R. Salziger, H.J. Probst, O.W.B. Schult, R. Lässer. to be publishedGoogle Scholar
  56. 4.18f
    E. Amaldi: Phys. Rep. 111, 1 (1984)CrossRefADSGoogle Scholar
  57. 4.19
    J.E. Pearson: Applied Spectroscopy 27, 450 (1973)CrossRefADSGoogle Scholar
  58. 4.20
    M.E. Malinowski: Appl. Phys. Lett. 39, 509 (1981)CrossRefADSGoogle Scholar
  59. 4.21
    M.E. Malinowski: J. Vac. Sci. Technol. A1, 933 (1983)ADSGoogle Scholar
  60. 4.22
    M.E. Malinowski: J. Less-Common Metals 89, 1 (1983)CrossRefGoogle Scholar
  61. 4.23
    A.W. Rogers: Techniques of Autoradiography (Elsevier, Amsterdam 1979)Google Scholar
  62. 4.24
    H.A. Fischer, G. Werner: Autoradiography (de Gruyter, Berlin 1971)Google Scholar
  63. 4.25
    T. Iida, Y. Ikebe: Nucl. Instrum. Meth. Phys. Res. A 253, 119 (1986)CrossRefADSGoogle Scholar
  64. 4.26
    R.H. Herz: The Photographic Action of Ionizing Radiations (Wiley, New York 1969)Google Scholar
  65. 4.27
    M. Aucouturier, G. Lapasset, T. Asaoka: Metallography 11, 5 (1978)CrossRefGoogle Scholar
  66. 4.28
    I. Taguchi: Proc. Hydrogen in Metals (JIMIS-2) p.225Google Scholar
  67. 4.29
    C.R. Cupp, P. Flubacher: J. Nucl. Mater. 6, 213 (1962)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rainer Lässer
    • 1
    • 2
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichGermany
  2. 2.JET Joint UndertakingAbingdon, OxfordshireUK

Personalised recommendations