Defects, Hysteresis and Memory Effects in Modulated Systems

  • J. P. Jamet
Part of the Springer Proceedings in Physics book series (SPPHY, volume 27)


Phase transitions in modulated systems are sensitive to the presence of defects, which may result in shifting of transition temperatures or changing critical behavior: defects are also responsible for specific hysteresis and memory effects. Some defects are intrinsic (discommensurations, phase vortices) some are extrinsinc (substitutional atoms, interstitials, irradiation defects, dislocations…). Frozen-in extrinsic defects deform the modulation phase and produce pinning of sliding modes, while mobile defects adjust to the modulation phase, giving rise to different properties. The memory effects which have been discovered in thiourea can be understood on the basis of mobile defects ordering in a defect density wave (DDW) with the modulation periodicity. This DDW traps in turn the modulation for the same wavevector. A variety of modulated structures has been shown recently to exhibit DDW condensation, both in insulators and charge density wave systems. In general, the nature of these mobile defects is unidentified. Irradiation defects give new problems: locked phases can be washed out, while new phases with arbitrary (irrational) wavevectors appear. Finally, the behavior of the memory effects in thiourea presents an interesting analogy with the properties of associative memories.


Memory Effect Associative Memory Irradiation Defect Solid State Phys Thermal Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Reinitzer, Montash Chem. 9, 421 (1888)CrossRefGoogle Scholar
  2. 2.
    Y. Yamada, I. Shibuya and S. Hoshino, J. Phys. Soc. Japan 18, 1594 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    R. Comès, M. Lambert, H. Launois and H. R. Zeller, Phys. Rev. B 8, 571 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    F. Denoyer, R. Comès, A. F. Garito and A. J. Heeger, Phys. Rev. Lett. 35, 445 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    F. Denoyer, private communicationGoogle Scholar
  6. 6.
    Among review papers, see for example: P. Bak, Rep. Prog. Phys. 45, 587 (1982)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Incommensurate Phases in Dielectrics, vol. 14.1 and 14.2, R. Blinc and A. P. Levanyuk editors in Modern Problems in Condensed Matter Sciences, North Holland Physics Publishing (1986)Google Scholar
  8. 8.
    Review Papers on “Phase transitions in the presence of small concentration of defects”, J. C. Toledano ed. to appear in a special issue of Phases Transitions, Gordon and Breach Publishers (1988)Google Scholar
  9. 9.
    M. S. Haque and J. R. Hardy, Phys. Rev. B 21, 245 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    V. Katkanant, P. J. Edwardson, J. R. Hardy and L. L. Boyer, Phys. Rev. Lett. 57, 2033 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    Y. I. Frenkel and T. Kontorova, Zh. Eksp. Teor. Fiz. 8, 1340 (1938)Google Scholar
  12. 12.
    S. Aubry in Solitons and Condensed Matter Physics, A. R. Bishop and T. Schneider Ed. Springer Verlag Publishers, p. 264 (1979)Google Scholar
  13. 12a.
    S. Aubry J. Physique (Paris) 44, 147 (1983)MathSciNetCrossRefGoogle Scholar
  14. 13.
    F. C. Frank and J. H. Van Der Merwe, Proc. Roy. Soc. 198, 205 (1949)ADSMATHCrossRefGoogle Scholar
  15. 14.
    P. Bak and V. J. Emery, Phys. Rev. Lett. 36, 978 (1976)ADSCrossRefGoogle Scholar
  16. 15.
    See T. Jansen, p. 67 in vol. 14.1 of Ref. [7]Google Scholar
  17. 16.
    J. F. Scott, Ferroelectrics 36, 375 (1981)CrossRefGoogle Scholar
  18. J. F. Scott, ibid. 66 11 (1986)Google Scholar
  19. 17.
    S. Kh. Esayan, V. V. Lemanov, N. Mamatkulov and L. A. Shuvalov, Sov. Phys. Crystallogr. 26, 619 (1981)Google Scholar
  20. 18.
    A. P. Levanyuk, A. S. Sigov, V. V. Osipov and A. A. Sobyanin, Sov. Phys. JETP 49, 176 (1979)ADSGoogle Scholar
  21. 19.
    D. E. Moncton, J. D. Axe and F. J. Disalvo, Phys. Rev. Lett. 34/ 734 (1975)ADSCrossRefGoogle Scholar
  22. 20.
    K. Nakanishi, J. Phys. Soc. Jap. 46, 1434 (1979)CrossRefGoogle Scholar
  23. 21.
    A. H. Moudden, Thesis, Orsay (France) 1980, unpublished;Google Scholar
  24. 21a.
    F. Denoyer, A. H. Moudden, R. Currat, C. Vettier, A. Bellamy and M. Lambert, Phys. Rev. B 25, 697 (1982); F. Denoyer and R. Currat, p. 129 in Vol. 14.2 of ref. [7]CrossRefGoogle Scholar
  25. 21b.
    F. Denoyer and R. Currat, p. 129 in Vol. 14.2 of ref. [7]Google Scholar
  26. 22.
    W. L. MacMillan, Phys. Rev. B 14, 1496 (1976);ADSCrossRefGoogle Scholar
  27. V. Janovec, Phys. Lett. 99A. 384 (1983)ADSGoogle Scholar
  28. 23.
    T. Nattermann, J. Phys. C: Solid State Phys. 18, 5683 (1985)ADSCrossRefGoogle Scholar
  29. 24.
    G. Dolino, Jap. J. of Applied Phys., 24, Suppl. 24–2, 153 (1985)Google Scholar
  30. 25.
    K. Haitiano, K. Erna and S. Hirotsu, Ferroelectrics 36., 343 (1981)CrossRefGoogle Scholar
  31. K. Hamano in [8]; H. Mashiyama, S. Tanisaki and K. Hamano: J. Phys. Soc. Jap. 51, 2538 (1982)ADSCrossRefGoogle Scholar
  32. 26.
    G. André, D. Durand, F. Denoyer, R. Currat and F. Moussa, Phys. Rev. B 35, 2909 (1987)ADSCrossRefGoogle Scholar
  33. 27.
    S. Barre, H. Mutka, C. Roucau and G. Errandonea, Phase Transitions 9, 225 (1987)CrossRefGoogle Scholar
  34. 28.
    J. P. Jamet and P. Lederer, J. Phys. Lettres (Paris) 44, L-257 (1983)Google Scholar
  35. J. P. Jamet and P. Lederer Ferroelectric Lett. 1, 139 (1984)CrossRefGoogle Scholar
  36. 29.
    P. Lederer, G. Montambaux, J. P. Jamet and M. Chauvin, J. de Phys. Lettres (Paris) 48 L-627 (1984)Google Scholar
  37. P. Lederer, J. P. Jamet, G. Montambaux, Ferroelectrics 66., 25 (1986)CrossRefGoogle Scholar
  38. M. Chauvin, Thèse Orsay (France) (1985) unpublishedGoogle Scholar
  39. 30.
    H. G. Unruh, J. Phys. C: Solid State Phys. 16, 3245 (1983)ADSCrossRefGoogle Scholar
  40. 31.
    G. Errandonea et al., J. de Phys. Lettres (Paris) 45, L-3291 (1984)Google Scholar
  41. 32.
    J. F. Scott, Ferroelectrics 66, 11 (1986)CrossRefGoogle Scholar
  42. 33.
    H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978)ADSCrossRefGoogle Scholar
  43. P. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979)ADSCrossRefGoogle Scholar
  44. 34.
    P. Lederer, G. Montambaux and J. P. Jamet, Mol. Cryst. and Liq. Cryst. 121, 99 (1985)CrossRefGoogle Scholar
  45. 35.
    P. Butaud, P. Segransan, C. Berthier, J. Dumas and C. Schlenker, Phys. Rev. Lett. 55, 253 (1985)ADSCrossRefGoogle Scholar
  46. 36.
    J. C. Toledano, G. Errandonea, J. Schneck, A. Litz1er, H. Savary, F. Bonnouvrier and M. L. Esteoule, Jap. J. Appi. Physics, 24 Suppl. 24–2, 290 (1985)Google Scholar
  47. 37.
    V. S. Vikhnin, Sov. Phys. Crystallogr. 31, 374 (1986)Google Scholar
  48. 38.
    M. Chauvin, G. Montambaux, J. P. Jamet to appear and M. Chauvin, Thèse Orsay (France) (1985) unpublishedGoogle Scholar
  49. 39.
    K. Golden, S. Goldsein and J. L. Lebowitz, Phys. Rev. Lett. 55, 2629 (1985)MathSciNetADSCrossRefGoogle Scholar
  50. 40.
    C. Manolikas, J. Schneck, J. C. Toledano, J. M. Kiat and G. Calvarin, Phys. Rev. B 25, 8884 (1987)ADSCrossRefGoogle Scholar
  51. 41.
    T. Nattermann, J. Phys. C: Solid State Phys. 18, 5683 (1985)ADSCrossRefGoogle Scholar
  52. 42.
    O. G. Vlokh, B. V. Kaminskii, A. V. Kityk, I. I. Polovinko and S. A. Sveleba, Sov. Phys. Sol. State 28, 1226 (1985)Google Scholar
  53. 43.
    I. P. Aleksandrova, Yu. N. Mosvitch, O. V. Rozanov, A. F. Sadreev, I. V. Seryukova and A. A. Sukhovsky, Jap. J. of Appl. 24, Suppl. 24–2 (1985)Google Scholar
  54. Sukhovsky Ferroelectrics 67., 63 (1986)CrossRefGoogle Scholar
  55. 44.
    J. Villain, J. de Phys. (Paris) Lettres 43, L-551 (1982)Google Scholar
  56. P. Prelovsek and R. Blinc, J. Phys. C: Solid State Phys. 17, 577 (1984) P. Prelovsek in [8]; R. Blinc, P. Prelovsek, V. Rutar, J. Seliger and S. Zumer in [7].ADSCrossRefGoogle Scholar
  57. 45.
    T. Nattermann, J. Phys. C: Solid State Phys. 16, 64 07 (1983)Google Scholar
  58. ibid, 18, 5683 (1985)ADSGoogle Scholar
  59. 46.
    H. Mutka, F. Rullier-Albenque and S. Bouffard, J. de Phys. (Paris) 48, 425 (1987)CrossRefGoogle Scholar
  60. 47.
    J. J. Hopfield: Proc. Natl. Acad. Sci. (U.S.A.) 79, 2554 (1982)MathSciNetADSCrossRefGoogle Scholar
  61. J. J. Hopfield, D. I. Feinstein and R. G. Palmer, Nature 304, 158 (1983)ADSCrossRefGoogle Scholar
  62. 48.
    J. P. Nadal, G. Toulouse, J. P. Changeux and S. Dehaene, Europhysics Lett. 1, 535 (1986)ADSCrossRefGoogle Scholar
  63. 49.
    E. C. Hirschoff, O. G. Symko and J. C. Wheatley, Phys. Lett. 33A, 19 (1970)ADSGoogle Scholar
  64. 50.
    H. Roeder and J. Yeomans, J. Phys. C: Solid State Phys. 18, L-163 (1985)CrossRefGoogle Scholar
  65. 51.
    L. Lundgren, P. Nordblad and L. Sandlund, Europhysics Lett. 1, 529 (1986)ADSCrossRefGoogle Scholar
  66. 52.
    H. Bestgen, Solid State Comm. 58, 197 (1986)ADSCrossRefGoogle Scholar
  67. 53.
    M. Ribet, Ferroelectrics 66, 259 (1986)CrossRefGoogle Scholar
  68. M. Ribet J. de Phys. (Paris) Lettres 44, L-963 (1983)Google Scholar
  69. 54.
    M. Barreto, J. P. Jamet and P. Lederer, Phys. Rev. B 28, 3994Google Scholar
  70. 55.
    Y. Ishibashi and H. Shiba, J. Phys. Soc. Jap. 45, 409 (1978)ADSCrossRefGoogle Scholar
  71. 56.
    J. P. Jamet, P. Lederer and A. H. Moudden, Phys. Rev. Lett. 48, 442 (1982)ADSCrossRefGoogle Scholar
  72. 57.
    W. Kinzel, Z. Phys. B 60, 205 (1985)ADSCrossRefGoogle Scholar
  73. 58.
    R. M. Fleming and L. F. Schneemeyer, Phys. Rev. B 33, 2930 (1986)ADSCrossRefGoogle Scholar
  74. 59.
    S. B. Coppersmith and P. B. Littlewood, preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. P. Jamet
    • 1
  1. 1.Laboratoire de Physique des Solides (associated to C.N.R.S.)Orsay CédexFrance

Personalised recommendations