Skip to main content

Coupling of Electrical Activity and Hormone Release in Mammalian Neurosecretory Neurons

  • Conference paper

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 9))

Abstract

In the world of neurosecretion, the mammalian magnocellular neurons that secrete oxytocin and vasopressin provide excellent models for studying the relationship between electrical activity and hormone release. Their cell bodies are grouped in well-defined areas of the hypothalamus, the supraoptic and paraventricular nuclei; their axons leave the nuclei, course in the hypothalamo-neurohy-pophyseal tract and terminate in the neural lobe of the hypophysis. In the neurohypophysis, their secretory products are released directly into the bloodstream and thus can be readily assayed by various methods. These magnocellular neurons constitute, then, a system whose anatomical organization, products of secretion, and patterns of hormone release are rather well established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew RD, Dudek FE (1984a) Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J Neurophysiol 51: 552–566.

    PubMed  CAS  Google Scholar 

  • Andrew RD, Dudek FE (1984b) Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J Physiol (Lond) 353: 171–185.

    CAS  Google Scholar 

  • Andrew RD, Dudek FE (1985) Spike broadening in magnocellular neuroendocrine cells of rat hypothalamic slices. Tibrain Res 334: 176–179.

    Article  CAS  Google Scholar 

  • Armstrong WE, Gallagher MJ, Sladek CD (1985) In vitro approaches to the electrophysiological analysis of magnocellular neurosecretory neurons. In: Schrier RW (ed) Vaso-pressin. Raven, New York, pp 395–405.

    Google Scholar 

  • Belin V, Moos F (1985) Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. Tij Physiol (Lond) 377: 369–390.

    Google Scholar 

  • Belin V, Moos F, Richard P (1984) Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings. Exp Brain Res 57: 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RJ (1985) Endogenous opioid peptides and hypothalamic neuroendocrine neurones. J Endocrinol 107: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RJ, Chapman C, Leng G (1982) A perifusion system for studying neurosecretion from the isolated rat neurohypophysis in vitro. J Neurosci Methods 5: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RJ, Brown D, Chapman C, Hancock PD, Leng G (1984) Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. J Physiol (Lond) 348:601–613.

    CAS  Google Scholar 

  • Boer K, Cransberg K, Dogterom J (1980) Effect of low-frequency stimulation of the pituitary stalk on neurohypophysial hormone release in vivo. Neuroendocrinology 30: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Bondy CA, Gainer H, Russell JT (1987) Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology 46: 258–267.

    Article  PubMed  CAS  Google Scholar 

  • Bourque CW, Renaud LP (1983) A perfused in vitro preparation of hypothalamus for electrophysiological studies on neurosecretory neurons. Tij Neurosci Methods 7: 203–214.

    Article  CAS  Google Scholar 

  • Bourque CW, Renaud LP (1985) Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. Tij Physiol (Lond) 363: 429–439.

    CAS  Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1985) The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J Physiol (Lond) 369: 45–60.

    CAS  Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1987a) Hormone release from isolated nerve endings of the rat neurohypophysis. J Physiol (Lond) 390: 55–70.

    CAS  Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1987b) Requirements for hormone release from permeabilized nerve endings isolated from the rat neurohypophysis. J Physiol (Lond) 390: 71–92.

    CAS  Google Scholar 

  • Cooke IM (1982) Electrical activity in relation to hormone secretion in the X-organ-sinus gland system of the crab. In: Farner DS, Lederis K (eds) Neurosecretion: molecules, cells, systems. Plenum, New York, pp 235–247.

    Google Scholar 

  • Douglas WW (1974) Mechanism of release of neurohypophyseal hormones: stimulus-secretion coupling. In: Knobil E, Sawyer WH (eds) Endocrinology. American Physiological Society, Washington, pp 191–224 (Handbook of physiology, vol 4, part 1).

    Google Scholar 

  • Douglas WW, Poisner AM (1964) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. Tij Physiol (Lond) 172: 1–18.

    CAS  Google Scholar 

  • Dreifuss JJ, Kamins I, Kelly JS, Ruf KB (1971) Action potentials and release of neurohypophyseal hormones in vitro. J Physiol (Lond) 215: 805–817.

    CAS  Google Scholar 

  • Dreifuss JJ, Harris MC, Tribollet E (1976a) Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats. J Physiol (Lond) 257: 337–354.

    CAS  Google Scholar 

  • Dreifuss JJ, Tribollet E, Baertschi AJ (1976b) Excitation of supraoptic neurones by vaginal distension in lactating rats; correlation with neurohypophyseal hormone release. Brain Res 113: 600–605.

    Article  PubMed  CAS  Google Scholar 

  • Dudek FE, Hatton GI, Mac Vicar BA (1980) Intracellular recordings from the paraventricular nucleus in slices of rat hypothalamus. J Physiol (Lond) 301: 101–114.

    CAS  Google Scholar 

  • Dutton A, Dyball REJ (1979) Phasic firing enhances vasopressin release from the rat neurohypophysis. Tij Physiol (Lond) 290: 433–440.

    CAS  Google Scholar 

  • Dyball REJ, Leng G (1987) Action potential recordings from the rat neural lobe in vivo. J Physiol (Lond) 394: 122P.

    Google Scholar 

  • Dyball REJ, Grossmann R, Leng G, Shibuki K (1988) Spike propagation and conduction failure in the rat neural lobe. J Physiol (Lond) (to be published).

    Google Scholar 

  • Ellendorff F, Forsling ML, Poulain DA (1982) The milk ejection reflex in the pig. J Physiol (Lond) 333: 577–594.

    CAS  Google Scholar 

  • Gainer H, Wolfe SA, Obaid AL, Salzberg BM (1986) Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinol 43: 557.

    Article  CAS  Google Scholar 

  • Grinvald A, Cohen LB, Lesher S, Boyle MB (1981) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode assay. J Neurophysiol 45: 829–840.

    PubMed  CAS  Google Scholar 

  • Harris GW (1948) The excretion of an antidiuretic substance by the kidney after electrical stimulation of the neurohypophysis in the unanaesthetised rabbit. J Physiol (Lond) 107: 430–435.

    CAS  Google Scholar 

  • Harris GW, Manabe Y, Ruf KB (1969) A study of the parameters of electrical stimulation of unmyelinated fibers in the pituitary stalk. J Physiol (Lond) 203: 67–81.

    CAS  Google Scholar 

  • Haterius HO, Ferguson JKW (1938) Evidence for the hormonal nature of the oxytocin principle of the hypophysis. Tiam J Physiol 124: 314–321.

    Google Scholar 

  • Ingram CD, Bicknell RJ, Brown D, Leng G (1982) Rapid fatigue of neuropeptide secretion during continual electrical stimulation. Neuroendocrinology 35: 424–428.

    Article  PubMed  CAS  Google Scholar 

  • Ishida A (1970) The oxytocin release and the compound action potential evoked by electrical stimulation on the isolated neurohypophysis of the rat. Jpn J Physiol 20: 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Jones CW, Pickering BT (1972) Intra-axonal transport and turnover of neurohypophyseal hormones in the rat. Tij Physiol (Lond) 227: 553–564.

    CAS  Google Scholar 

  • Knepel N, Meyer DK (1983) The effect of naloxone on vasopressin release from rat neurohypophysis incubated in vitro. Tij Physiol (Lond) 341: 507–515.

    CAS  Google Scholar 

  • La Bella FS, Sanwal M (1965) Isolation of nerve endings from the posterior pituitary gland. J Cell Biol 25: 179–191.

    Google Scholar 

  • Legendre P, Cooke IM, Vincent JD (1982) Regenerative responses of long duration recorded intracellulary from dispersed cell cultures of fetal mouse hypothalamus. J Neurohypophysiol 48: 1121–1141.

    CAS  Google Scholar 

  • Lemos JR, Nordmann JJ, Cooke IM, Stuenkel EL (1986) Single channels and ionic currents in peptidergic nerve terminals. Nature 319: 410–412.

    Article  PubMed  CAS  Google Scholar 

  • Leng G, Shibuki K (1987) Extracellular potassium changes in the rat neurohypophysis during activation of the magnocellular neurosecretory system. Tij Physiol (Lond) 392: 97–111.

    CAS  Google Scholar 

  • Leng G, Shibuki K, Way S (1987) Facilitation of stimulus-evoked hormone release from the rat neurohypophysis by elevated extracellular potassium concentrations. J Physiol (Lond) 388: 14P.

    Google Scholar 

  • Lincoln DW (1974) Dynamics of oxytocin secretion. In: Knowles FGW, Vollrath L (eds) Neurosecretion: the final neuroendocrine pathway. Springer, Berlin Heiderlberg New York, pp 129–133.

    Google Scholar 

  • Lincoln DW, Wakerley JB (1974) Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. Tij Physiol (Lond) 242: 533–554.

    CAS  Google Scholar 

  • Lincoln DW, Wakerley JB (1975) Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. Tij Physiol (Lond) 250: 443–461.

    CAS  Google Scholar 

  • Lincoln DW, Hill A, Wakerley JB (1973) The milk ejection reflex of the rat: an intermittent function not abolished by surgical levels of anaesthesia. J Endocrinol 57: 459–476.

    Article  PubMed  CAS  Google Scholar 

  • Mason WT (1983) Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proc R Soc (Lond) B 217: 141–161.

    Article  CAS  Google Scholar 

  • Nordmann JJ (1976) Evidence for calcium inactivation during hormone release in the rat neurohypophysis. J Exp Biol 65: 669–683.

    PubMed  CAS  Google Scholar 

  • Nordmann JJ (1983) Stimulus-secretion coupling. Prog Brain Res 60: 281–304.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann JJ, Dreifuss JJ (1972) Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials. Tibrain Res 45: 604–607.

    Article  CAS  Google Scholar 

  • Nordmann JJ, Stuenkel EL (1986) Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat. Tij Physiol (Lond) 380: 521–539.

    CAS  Google Scholar 

  • Nordmann JJ, Desmazes JP, Georgescauld D (1982) The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones. Neuroscience 7: 731–737.

    Article  PubMed  CAS  Google Scholar 

  • Paisley AC, Summerlee AJS (1984) Activity of putative oxytocin neurones during reflex milk ejection in conscious rabbits. Tij Physiol (Lond) 347: 465–478.

    CAS  Google Scholar 

  • Pittman Q (1983) Increases in antidromic latency of neurohypophyseal neurons during sustained activation. Neurosci Lett 37: 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Poulain DA, Tasker JG (1985) Recurrent mammary gland contractions induced by a low tonic release of oxytocin in rats. Tij Endocrinol 107: 89–96.

    Article  CAS  Google Scholar 

  • Poulain DA, Theodosis DT (1988) Electrical activity of peptidergic neurones and its relation to hormone release. In: Pickering BT, Wakerley JB, Summerlee AJS (eds) Neurosecretion: Cellular aspects of the production and release of neuropeptides. Plenum Press, New York (to be published).

    Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Tineuroscience 7: 773–808.

    Article  CAS  Google Scholar 

  • Poulain DA, Brown D, Wakerley JB (1988) Statistical analysis of patterns of electrical activity in vasopressin-and oxytocin-secreting neurones. In: Leng G (ed) Pulsatility in neuroendocrine systems. CRC, New York (to be published).

    Google Scholar 

  • Ranson SW, Fischer C, Ingram WR (1938) The hypothalamo-hypophysial mechanism in diabetus insipidus. Res Publ Assoc Res Nerv Ment Dis 17: 410–432.

    Google Scholar 

  • Robinson ICAF (1985) Radioimmunoassay of oxytocin: the standard. In: Amico JA, Robinson AG (eds) Oxytocin, clinical and laboratory studies. Excerpta Medica, Amsterdam, pp 24–30.

    Google Scholar 

  • Rothballer AB, Zeballos GA (1980) Multiple unit activity in rat neurohypophysis. Tineuroendocrinology 30: 268–274.

    Article  CAS  Google Scholar 

  • Salzberg BM, Grinvald A, Cohen LB, Davila HW, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40: 1281–1291.

    PubMed  CAS  Google Scholar 

  • Shaw FD, Dyball REJ, Nordmann JJ (1983) Mechanisms of inactivation of neurohypophyseal hormone release. Prog Brain Res 60: 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Shaw FD, Bicknell RJ, Dyball REJ (1984) Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts. Relevant stimulation parameters. Neuroendocrinology 39: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Sladek CD, Knigge KM (1977) Cholinergic stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system in organ culture. Tiendocrinology 101: 411–420.

    Article  CAS  Google Scholar 

  • Summerlee AJS (1981) Extracellular recordings from oxytocin neurons during the expulsive phase of birth in unanaesthetised rats. J Physiol (Lond) 321: 1–9.

    CAS  Google Scholar 

  • Wakerley JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin-and vasopressin-releasing neurones during progressive dehydration. Brain Res 148:425–440.

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Azuma T, Matsuda K (1966) Neurosecretory cell: capable of conducting impulse in rats. Science 154: 778–779.

    Article  PubMed  CAS  Google Scholar 

  • Zeballos GA, Thornborough JR, Rothballer AB (1975) Neurohypophyseal electrical activity in the anesthetized cat. Neuroendocrinology 18: 104–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poulain, D.A., Theodosis, D.T. (1988). Coupling of Electrical Activity and Hormone Release in Mammalian Neurosecretory Neurons. In: Ganten, D., Pfaff, D., Pickering, B. (eds) Stimulus-Secretion Coupling in Neuroendocrine Systems. Current Topics in Neuroendocrinology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73495-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73495-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73497-7

  • Online ISBN: 978-3-642-73495-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics