A Decision Support System for Vehicle Scheduling in Public Transport

  • J. R. Daduna


In urban mass transit the timetable is determined by various political, social, economic and other factors. Making use of a module which is part of the HOT (Hamburg Optimization Techniques) decision support system, it is possible to alter input data in order to decrease the number of required vehicle schedules. The range of available transportation services has not to be reduced. By using this system as well, more trips may be offered for a fixed fleet size, especially in peak hours.

This special technique for vehicle scheduling is based on an assignment algorithm with an additional constraint. In an interactive procedure a sensitivity analysis will be executed during which only the departure time of a trip or special delay buffers are at users’ disposal. Applications in practice show favourable results for different mass transit companies.


Decision Support System Public Transport Assignment Algorithm Fleet Size Interactive Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bodin L, Golden B, Assad A, Ball M (1983) Routing and Scheduling of Vehicles and Crews: The State of the Art. Computer and Operations Research 10: 63–211Google Scholar
  2. Carraresi P, Gallo G (1984) Network Models for Vehicle and Crew Scheduling. European Journal of Operations Research 16: 139–151CrossRefGoogle Scholar
  3. Daduna JR (1986) Die Anwendung einer dialog-gesteuerten Sensitivitätsanalyse bei der Fahrzeugumlaufbildung in Verkehrsbetrieben, in: Operations Research Proceedings 1985. Springer, Berlin, Heidelberg, pp 310–317Google Scholar
  4. Daduna JR (1987) DV-gestützte Dienstplanbildung für das Fahrpersonal in Verkehrsbetrieben — Problematik und Lösungsansätze, in: Operations Research Proceedings 1986. Springer, Berlin, Heidelberg, pp 76–85Google Scholar
  5. Luedtke LK (1985) RUCUS II: A Review of System Capabilities, in: Rousseau J-M (ed.) Computer Scheduling of Public Transport 2. North Holland, Amsterdam, New York, Oxford, pp 61–115Google Scholar
  6. Magnanti TL (1981) Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and Prospects. Networks 11: 179–213CrossRefGoogle Scholar
  7. Mojsilovic M (1983) Verfahren für die Bildung von Fahrzeugumläufen, Dienstplänen und Dienstreihenfolgenplänen in Verkehr und Transport, in: HEUREKA ‘83 — Optimierung in Transport und Verkehr, Karlsruhe, pp 178–191Google Scholar
  8. Rousseau J-M (ed.)(1985) Computer Scheduling of Public Transport 2. North Holland, Amsterdam, New York, OxfordGoogle Scholar
  9. Wren A (ed.) (1981) Computer Scheduling of Public Transport 1. North Holland, Amsterdam, New York, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1988

Authors and Affiliations

  • J. R. Daduna
    • 1
  1. 1.Hamburger Hochbahn AktiengesellschaftHamburgGermany

Personalised recommendations