Wirkungsweise systemischer Lipidsenker auf Lipoproteine, Apolipoproteine und Enzyme des Lipoproteinstoffwechsels

  • H. U. Klör
Conference paper

Zusammenfassung

Unter den systemischen Lipidsenkern nehmen die Fibrate einen hervorragenden Platz ein. Mit Clofibrat als Ausgangssubstanz ist diese Stoffgruppe seit gut 20 Jahren in die Therapie der Hyperlipidämien eingeführt. Im Folgenden soll vor allem auf einige Aspekte des Wirkmechanismus dieser Substanzgruppe eingegangen werden. Hierbei wird besonders die Wirkung auf die Lipoproteinfraktionen, die Apolipoproteine und die Lipasen von Interesse sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Kloer HU, Luley C (1987) Therapie der Hyperlipoproteinämie Typ II und IV: Wirksamkeitsvergleich von Beclobrat und Bezafibrat. Z Allg Med 63: 861Google Scholar
  2. 2.
    Nestel PJ, Podkolinski M, Fioge NH (1979) Marked increase in HDL in mountaineers. Atherosclerosis 34: 192CrossRefGoogle Scholar
  3. 3.
    Lipid Research Clinics Program (1984) The Lipid Research Clinics Coronary Primary Prevention Trial Results: I. Reduction in incidence of coronary heart disease. JAMA 251: 351CrossRefGoogle Scholar
  4. 4.
    Kloer HU, Luley C (1987) Effect of gemfibrozyl on lipoprotein lipids and apolipoproteins in severe hypertriglyceridemia. In “Atherosclerosis and Cardiovascular Diseases”, S Lenzi, GC Descovich edts, E Compositori, Bologna: p 1121–1126Google Scholar
  5. 5.
    Vessby B, Lithell H, Ledermann H (1982) Elevated lipoprotein lipase activity in sceletal muscle tissue during treatment of hypertriglyceridemic patients with bezafibrate. Atherosclerosis 44: 113–118PubMedCrossRefGoogle Scholar
  6. 6.
    Rubba P, Falanaga A, Postiglione A, Patti L, Mancini M (1982) Increase in lipoprotein lipase activity after protofen (fenofibrate) treatment in primary hyperlipoproteinemia. Clin Ther Cardovasc 2: 177–182Google Scholar
  7. 7.
    Lithell H, Schele R, Vessby B, Jacobs I (1984) Lipoproteins, lipoprotein lipase and glycogen after prolonged physical activity. J Appi Physiol 57: 698Google Scholar
  8. 8.
    Posner I, Wang CS, McConathy WJ (1983) Kinetics of bovine milk lipoprotein lipase and the mechanism of enzyme activation by apolipoprotein C-II. Biochemistry 22: 4041–4047PubMedCrossRefGoogle Scholar
  9. 9.
    Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apolipoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46: 375–382PubMedCrossRefGoogle Scholar
  10. 10.
    Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins: Effect of apolipoprotein C-IIIJ Clin Invest 75: 384–390Google Scholar
  11. 11.
    Franceschini G, Sirtori M, Gianfranceschi G, Frosi T, Montanari G, Sirtori CR (1985) Reversible increase of the Apo C-II/Apo C-III ratio in the very low density lipoproteins after procetofen treatment in hypertriglyceridemic patients. Artery 12: 363–381PubMedGoogle Scholar
  12. 12.
    Sherill BC, Innerarity TL, Mahley RW (1980) Rapid hepatic clearance of Apo E HDLc by a high- affinity receptor: identity with the chylomicron remnant transport process. J Biol Chem 255: 1804–1807Google Scholar
  13. 13.
    Heller FR, Desager JP, Harvengt C (1981) Plasma lipid concentration and lecithin: cholesterol acyltransferase activity in normo lipidemic subjects given fenofibrate and colestipol. Metabolism 30: 67–71PubMedCrossRefGoogle Scholar
  14. 14.
    Kloer HU (1987) Structure and biochemical effects of fenofibrate. Am J Med 83: 3–8PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. U. Klör

There are no affiliations available

Personalised recommendations