Skip to main content

Biochemistry of Oxidative Stress: Recent Experimental Work

  • Chapter
Eicosanoids, Lipid Peroxidation and Cancer

Abstract

Reactive oxygen species have been shown to occur as a normal part of aerobic life, and they can lead to toxicity in cells and organs (for reviews, see Chance et al. 1979; Sies 1985, 1986). This is of importance in pathophysiological conditions such as carcinogenesis, inflammation, radiation damage, and also in drug and xenobiotic toxicity. Reactive oxygen species are also generated in the process of redox cycling, as used in chemotherapy, and there are indications that they are also formed during alcohol metabolism. A balance between pro-oxidant and antioxidant capacities is normally maintained in cells, and a disbalance in favour of pro-oxidants has been called oxidative stress. The most recent reviews on the many aspects in this field from our group are available (Sies 1986, 1987a–c; Sies et al. 1987a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762

    Article  PubMed  CAS  Google Scholar 

  • Farr S, d’Ari R, Touati D (1986) Oxygen-dependent mutagenesis in Escherichia coli lacking Superoxide dismutase. Proc Natl Acad Sci USA 83:8268–8272

    Article  PubMed  CAS  Google Scholar 

  • Hartman L, Hartman PE, Barnes WM, Tuley E (1984) Spontaneous mutation frequencies in salmonella: Enhancement of G/C to A/T transitions and depression of deletion and frame-shift mutation frequencies afforded by anoxic incubation. Environ Mutagen 6:633–650

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MVM, Nieuwint AWM, Aubry JM, Kortbeek H, Arwert F, Joenje H (1987) DNA Damage by chemically generated singlet oxygen. Free Radic Res Commun 343-350

    Google Scholar 

  • Medeiros MHG, Wefers H, Sies H (1987) Generation excited species catalyzed by horseradish peroxidase or hemin in the presence of reduced glutathione and H2O2. J Free Radie Biol Med 3:107–110

    Article  CAS  Google Scholar 

  • Müller A, Cadenas E, Graf P, Sies H (1984) A novel biologically active selenoorganic compound. I. Glutathione peroxidase-like activity in vitro and anti-oxidant capacity of PZ 51. Biochem Pharmacol 33:3235–3239

    Article  PubMed  Google Scholar 

  • Müller A, Gabriel H, Sies H (1985) A novel biologically active selenoorganic compound. IV. Protective glutathione-dependent effect of PZ 51 (ebselen) against ADP-Fe induced lipid peroxidation in isolated hepatocytes. Biochem Pharmacol 34:1185–1189

    Article  PubMed  Google Scholar 

  • Müller A, Gabriel H, Sies H, Terlinden R, Fischer H, Römer A (1988) A novel biochemically active selenoorganic compound. VIL Biotransformation of ebselen in perfused rat liver. Biochem Pharacol (in press)

    Google Scholar 

  • Napetschnig S, Sies H (1987) Generation of photoemissive species by mitomycin C redox cycling in rat liver microsomes. Biochem Pharmacol 18:3037–3042

    Google Scholar 

  • Noll T, de Groot H, Sies H (1987) Distinct temporal relation among oxygen uptake, malondialdehyde formation, and low-level chemiluminescence during microsomal lipid peroxidation. Arch Biochem Biophys 252:284–291

    Article  PubMed  CAS  Google Scholar 

  • Prohaska HJ, Talalay P, Sies H (1987) Direct protective effect of NAD(P)H: Quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver. J Biol Chem 262:1931–1934

    Google Scholar 

  • Sargentini JJ, Smith KC (1985) Spontaneous mutagenesis: the roles of DNA repair, replication, and recombination. Mutat Res 154:1–27

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1985) Oxidative stress: Introductory remarks. In: Sies H (ed) Oxidative stress. Academic, London, pp 1–8

    Google Scholar 

  • Sies H (1986) Biochemistry of oxidative stress. Angew Chem [Int Edn Engl] 25:1058–1071

    Article  Google Scholar 

  • Sies H (1987a) Die enzymatische Entgiftung reaktiver Sauerstoffspezies. In: Elstner EF (ed) Reaktive Sauerstoffspezies in der Medizin. Springer, Berlin Heidelberg New York, pp 184–190

    Chapter  Google Scholar 

  • Sies H (1987b) Antioxidant activity in cells and organs. Am Rev Respir Dis 136:478–480

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1987c) Lipid peroxidation and its measurement. In: Waiden TL Jr, Hughes HN (eds) Prostaglandin and lipid metabolism in radiation injury. Plenum, New York, pp 379–389

    Chapter  Google Scholar 

  • Sies H, Akerboom T, Ishikawa T, Cadenas E, Graf P, Gabriel H, Müller A (1987a) Hepatic and cardiac hydroperoxide metabolism. Role of selenium. In: Combs GF Jr, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in biology and medicine. Van Nostrand Reinhold, New York, pp 104–114

    Google Scholar 

  • Sies H, Brigelius R, Graf P (1987b) Hormones, glutathione status and protein S-thiolation. Adv Enzyme Regul 26:175–189

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Christman MF, Sies H, Ames BN (1988) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc Natl Acad Sci USA, (in press)

    Google Scholar 

  • Wagner G, Balzer F, Swiers C, Sies H (1987) Induction of DT diaphorase and other detoxication enzymes of phase II by 5-azacytidine. Chem Scripta 27A:95–96

    CAS  Google Scholar 

  • Wagner G, Pott U, Bruckschen M, Sies H (1988) Effects of 5-azacytidine and methyl-group deficiency on NAD(P)H: Quinone oxidoreductae and GSH S-transferase in liver. Relationship to DNA methylation and DNA(Cytosine-5) methyltransferase. Biochem J 251, (in press)

    Google Scholar 

  • Wefers H, Sies H (1986) Generation of photoemissive species during quinone redox cycling. Biochem Pharmacol 35:22–24

    Article  PubMed  CAS  Google Scholar 

  • Wefers H, Sies H (1987) Formation of photoemissive species during redox cycling of menadione and the menadione glutathione conjugate. Chem Scripta 27A:109–111

    CAS  Google Scholar 

  • Wefers H, Schulte-Frohlinde D, Sies H (1987) Loss of transforming activity of plasmid DNA (pBR 322) in E. coli caused by singlet molecular oxygen. FEBS Lett 211:49–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sies, H. (1988). Biochemistry of Oxidative Stress: Recent Experimental Work. In: Nigam, S.K., McBrien, D.C.H., Slater, T.F. (eds) Eicosanoids, Lipid Peroxidation and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73424-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73424-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18932-9

  • Online ISBN: 978-3-642-73424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics