Skip to main content

Nutrient Transport Across the Integument of Marine Invertebrates

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 2))

Abstract

Since the turn of this century there has been recurrent interest in the ability of aquatic organisms to make direct nutritional use of dissolved organic material (DOM). Upon examination, it is a particularly compelling idea, i.e., routine exposure of an animal’s integument to its surroundings results in an accumulation of exogenous material to support nutritional and/or other physiological needs. Indeed, some animals, for example, pogonophorans, and others lacking a gut, would seem dependent on integumental uptake. In fact, all animals should (it would seem) benefit from such a capacity. Evidence to support this contention, however, has only recently been generally accepted. We are currently in a period of renewed interest in integumental transport of DOM, stemming from studies using several new technical innovations and experimental systems. It is increasingly apparent that the integument of marine invertebrates not only serves as an effective barrier that protects the animal from intrusion of the sea, but also permits the regulated exchange of organic materials between organism and environment. Furthermore, it is now clear that this exchange can play a significant role in animal nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahearn GA, Gomme J (1975) Transport of exogenous D-glucose by the integument of a polychaete worm (Nereis diversicolor Muller). J Exp Biol 62:243–264

    CAS  Google Scholar 

  • Ahearn GA, Townsley SJ (1975) Integumentary amino acid transport and metabolism in the apodus sea cucumber, Chirodota rigida. J Exp Biol 62:733–752

    CAS  Google Scholar 

  • Aiello EL (1970) Nervous and chemical stimulation of the gill cilia in bivalve molluscs. Physiol Zool 43:60–70

    CAS  Google Scholar 

  • Albrechtsen S, Gomme J (1984) Specificity of D-glucose transport by the apical membrane of Nereis diversicolor epidermis. Biochim Biophys Acta 770:47–54

    CAS  Google Scholar 

  • Allemand D, Renzis G de, Ciapa B, Girard J-P, Payan P (1984) Characterization of valine transport in sea urchin eggs. Biochim Biophys Acta 722:337–346

    Google Scholar 

  • Allemand D, Renzis G de, Maistre C, Girard J-P, Payan P (1985) Uptake of valine and alanine by a neutral aminoacid carrier in sea urchin eggs: cyclic variations in the early clevage stage. J Membr Biol 87:217–224

    CAS  Google Scholar 

  • Allemand D, Renzis G de, Payan P, Girard J-P (1986) Regulatory and energetic role of Na+ in amino acid uptake by fertilized sea urchin eggs. Dev Biol 118:19–27

    PubMed  CAS  Google Scholar 

  • Anderson JW (1975) The uptake and incorporation of glycine by the gills of Rangia cuneata (Mollusca: Bivalvia) in response to variations in saliniy and sodium. In: Vernberg FJ (ed) Physiological ecology of estuarine organisms. Univ S Carolina Press, Columbia, pp 239–258

    Google Scholar 

  • Anderson JW, Bedford B (1973) The physiological response of the estuarine clam, Rangia cuneata (gray), to salinity. II. Uptake of glycine. Biol Bull 144:229–247

    CAS  Google Scholar 

  • Anderson JW, Stephens GC (1969) Uptake of organic material by aquatic invertebrates. VI. Role of epiflora in apparent uptake of glycine by marine crustaceans. Mar Biol 4:243–249

    CAS  Google Scholar 

  • Aronson PS (1981) Identifying secondary active solute transport in epithelia. Am J Physiol 240:F1–F11

    PubMed  CAS  Google Scholar 

  • Bamford DR (1984) Echinodermata. Permeability and epidermal transport. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 775–789

    Google Scholar 

  • Bamford DR, Campbell E (1976) The effect of environmental factors on the absorption of L-phenylalanine by the gill of Mytilus edulis. Comp Biochem Physiol 53A:295–299

    Google Scholar 

  • Bamford DR, Gingles R (1974) Absorption of sugars in the gill of the Japanese oyster, Crassostrea gigas. Comp Biochem Physiol 49A:637–646

    Google Scholar 

  • Bamford DR, McCrea R (1975) Active absorption of neutral and basic amino acids by the gill of the common cockle, Cerastoderma edule. Comp Biochem Physiol 50A:811–817

    Google Scholar 

  • Bayne BL, Newell RC (1983) Physiological energetics of marine molluscs. In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol 4. Physiology, part 1. Academic Press, London New York, pp 407–515

    Google Scholar 

  • Bayne BL, Scullard C (1977) Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). J Mar Biol Assoc UK 57:355–369

    CAS  Google Scholar 

  • Bayne BL, Thompson RJ, Widdows J (1976) Physiology, vol 1. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge Univ Press, Cambridge, pp 121–206

    Google Scholar 

  • Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) (1984) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Berg WE (1968) Kinetics of uptake and incorporation of valine in the sea urchin embryo. Exp Cell Res 49:379–395

    PubMed  CAS  Google Scholar 

  • Bishop SH (1976) Nitrogen metabolism and excretion:regulation of intracellular amino acid concentration. Estuarine Processes 1:414–431

    CAS  Google Scholar 

  • Bishop SH, Ellis LL, Burcham JM (1983) Amino acid metabolism in molluscs. In: Hochachka P (ed) The Mollusca, vol 1. Metabolic chemistry and molecular biomechanics. Academic Press, London New York, pp 243–327

    Google Scholar 

  • Bito LZ (1972) Comparative study of concentrative prostaglandin accumulation by various tissues of mammals and marine vertebrates and invertebrates. Comp Biochem Physiol 43A:65–82

    Google Scholar 

  • Braven J, Evans R, Butler EI (1984) Amino acids in sea water. Chem Ecol 2:11–21

    CAS  Google Scholar 

  • Bunde TA, Fried M (1978) The uptake of dissolved free fatty acids from seawater by a marine filter feeder, Crassostrea virginica. Comp Biochem Physiol 60A:139–144

    CAS  Google Scholar 

  • Burgh ME de (1978) Specificity of L-alanine transport in the spine epithelium of Paracentrotus lividus (Echinoidea). J Mar Biol Assoc UK 58:425–440

    Google Scholar 

  • Burgh ME de, West AB, Jeal F (1977) Absorption of L-alanine and other dissolved nutrients by the spines of Paracentrotus lividus (Echinoidea). J Mar Biol Assoc UK 57:1031–1045

    Google Scholar 

  • Carlucci AF, Craven DB, Henrichs SM (1985) Surface film microheterotrophs: amino acid metabolism and solar radiation effects on their activities. Mar Biol 85:13–22

    CAS  Google Scholar 

  • Castille FL Jr, Lawrence AL (1979) The role of bacteria in the uptake of hexoses from seawater by postlarval penaeid shrimp. Comp Biochem Physiol 64A:41–44

    CAS  Google Scholar 

  • Chien PK, Rice MA (1985) Autoradiographic localization of exogenously supplied amino acids after uptake by the polychaete Glycera dibranciata Ehlers. Wasmann J Biol 43:60–71

    Google Scholar 

  • Chien PK, Stephens GC, Healey PI (1972) The role of ultrastructure and physiological differentiation of epithelia in amino acid uptake by the bloodworm: Glycera dibranchiata. Biol Bull 142:219–235

    PubMed  CAS  Google Scholar 

  • Clements LA J (1986) Amino acid uptake by a regenerating brittle star. Am Zool 26:42A

    Google Scholar 

  • Costopulos J J, Stephens GC, Wright SH (1979) Uptake of amino acids by marine polychaetes under anoxic conditions. Biol Bull 157:434–444

    CAS  Google Scholar 

  • Crane RK (1977) The gradient hypothesis and other models of carrier mediated active transport. Rev Physiol Biochem Pharm 78:101–163

    Google Scholar 

  • Crowe JH, Dickson KA, Otto JL, Colon R, Farley KK (1977) Uptake of amino acids by the mussel Modiolus demissus. J Exp Zool 202:323–332

    CAS  Google Scholar 

  • Davis JP, Stephens GC (1984a) Uptake of free amino acids by bacteria-free larvae of the sand dollar Dendraster excentricus. Am J Physiol 247:R733-R739

    PubMed  CAS  Google Scholar 

  • Davis JP, Stephens GC (1984b) Regulation of net amino acid exchange in sea urchin larvae. Am J Physiol 247:R1029-R1037

    PubMed  CAS  Google Scholar 

  • Davis JP, Keenan CL, Stephens GC (1985 a) Na+-dependent amino acid transport in bacteria-free sea urchin larvae. J Comp Physiol 156:121–127

    CAS  Google Scholar 

  • Davis JP, Stephens GC, Rice MA (1985 b) Net entry of amino acids into the brittle star Ophionereis annulata. Comp Biochem Physiol 81A:899–903

    CAS  Google Scholar 

  • DiDomenico DA, Iverson RL (1977) Uptake of glycolic acid by a marine bivalve. J Exp Mar Biol Ecol 28:243–254

    CAS  Google Scholar 

  • DuPaul WD, Webb KL (1971) Free amino acid accumulation insolated gill tissue of My a arenaria. Arch Int Physiol Biochim 79:327–336

    PubMed  CAS  Google Scholar 

  • Efford IE, Tsumura K (1973) Uptake of dissolved glucose and glycine by Pisidium, a freshwater bivalve. Can J Zool 51:825–832

    CAS  Google Scholar 

  • Epel D (1972) Activation of an Na+-dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res 72:74–89

    PubMed  CAS  Google Scholar 

  • Ferguson JC (1967 a) An autoradiographic study of the utilization of free amino acids by starfishes. Biol Bull 133:317–329

    Google Scholar 

  • Ferguson JC (1967b) Utilization of dissolved exogenous nutrients by the starfishes, Asterias forbesi and Henricia sanguinolenta. Biol Bull 132:161–173

    CAS  Google Scholar 

  • Ferguson JC (1970) An autoradiographic study of the translocation and utilization of amino acids by starfish. Biol Bull 138:14–25

    CAS  Google Scholar 

  • Ferguson JC (1971) Uptake and release of free amino acids by starfishes. Biol Bull Ml: 122–129

    Google Scholar 

  • Ferguson JC (1980a) Fluxes of dissolved amino acids between sea water and Echinaster. Comp Biochem Physiol 65A:291–295

    CAS  Google Scholar 

  • Ferguson JC (1980b) The non-dependency of a starfish on epidermal uptake of dissolved organic matter. Comp Biochem Physiol 66A:461–465

    CAS  Google Scholar 

  • Ferguson JC (1982) A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biol Bull 162:1–17

    CAS  Google Scholar 

  • Fisher FM Jr, Oaks J A (1978) Evidence for a nonintestinal nutritional mechanism in the Rhynehocoelan, Lineus ruber. Biol Bull 154:213–225

    CAS  Google Scholar 

  • Fontaine AR, Chia F-S (1968) Echinoderms: an autoradiographic study of assimilation of dissolved organic molecules. Science 161:1153–1155

    PubMed  CAS  Google Scholar 

  • Fuhrman JA, Bell TM (1985) Biological considerations in the measurement of dissolved free amino acids in seawater and implications for chemical and microbiological studies. Mar Ecol Prog Ser 25:13–21

    CAS  Google Scholar 

  • Gilles R (1979) Intracellular organic osmotic effectors. In: Gilles R (ed) Mechanisms of osmoregulation in animals. Wiley, New York, pp 111–154

    Google Scholar 

  • Gomme J (1981a) Recycling of D-glucose in collagenous cuticle: a means of nutrient conservation? JMembr Biol 62:47–52

    CAS  Google Scholar 

  • Gomme J (1981b) D-glucose transport across the apical membrane of the surface epithelium in Nereis diversicolor. J Membr Biol 62:29–46

    PubMed  CAS  Google Scholar 

  • Gomme J (1982a) Laminar water flow, amino acid absorption, and amino acid recycling in the mussel gill. Am Zool 22:898

    Google Scholar 

  • Gomme J (1982b) Epidermal nutrient absorption in marine invertebrates: a comparative analysis. Am Zool 22:691–708

    CAS  Google Scholar 

  • Gomme J (1984) Annelida: permeability and epidermal transport. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 323–367

    Google Scholar 

  • Gordon MS (1982) Animal physiology: principles and adaptations, 4th edn. Macmillan, New York

    Google Scholar 

  • Hammen CS (1979) Metabolic rates of marine bivalves determined by calorimetry. Comp Biochem Physiol 62A:955–959

    Google Scholar 

  • Hammen CS (1980) Total energy metabolism of marine bivalve mollusks in anaerobic and aerobic states. Comp Biochem Physiol 67A:617–621

    Google Scholar 

  • Hammen CS (1983) Direct calorimetry of marine invertebrates entering anoxic states. J Exp Zool 228:397–403

    Google Scholar 

  • Henrichs SM, Farrington JW (1979) Amino acids in interstitial waters of marine sediments. Nature (London) 279:319–322

    CAS  Google Scholar 

  • Henrichs SM, Williams PM (1985) Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer. Mar Chem 17:141–163

    CAS  Google Scholar 

  • Henry RP, Mangum CP (1980) Salt and water balance in the oligohaline clam, Rangia cuneata. III. Reduction of the free amino acid pool during low salinity adaptation. J Exp Zool 211: 25–32

    CAS  Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool 59:169–185

    Google Scholar 

  • Hoist H, Zebe E (1984) Absorption of volatile fatty acids from ambient water by the lugworm Arenicola marina. Mar Biol 80:125–130

    Google Scholar 

  • Johannes RE, Coward SJ, Webb KL (1969) Are dissolved amino acids an energy source for marine invertebrates? Comp Biochem Physiol 29:283–288

    CAS  Google Scholar 

  • Jorgensen CB (1975) On gill function in the mussle Mytilus edulis L. Ophelia 13:187–232

    Google Scholar 

  • Jorgensen CB (1976) August Putter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol Rev 51:291–328

    Google Scholar 

  • Jorgensen CB (1982) Uptake of dissolved amino acids from natural sea water in the mussel Mytilus edulis. Ophelia 21:215–221

    Google Scholar 

  • Jorgensen CB (1983) Patterns of uptake of dissolved amino acids in mussels (Mytilus edulis). Mar Biol 73:177–182

    Google Scholar 

  • Jorgensen NOG (1979) Uptake of L-valine and other amino acids by the polychaete Nereis virens. Mar Biol 52:45–52

    Google Scholar 

  • Jorgenson NOG (1980) Uptake of glycine and release of primary amines by the polychaete Nereis virens (Sars) and the mud snail Hydrobia neglecta Muus. J Exp Mar Biol Ecol 47:281–297

    Google Scholar 

  • Jorgensen NOG (1982) Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar Ecol Prog Ser 8:145–159

    Google Scholar 

  • Jorgensen NOG, Kristensen E (1980) Uptake of amino acids by three species of Nereis (Annelida: Polychaeta). I. Transport kinetics and net uptake from natural concentrations. Mar Ecol Prog Ser 3:329–340

    Google Scholar 

  • Jorgensen NOG, Lindroth P, Mopper K (1981) Extraction and distribution of free amino acids and ammonium in sediment interstitial water from the Limfijord, Denmark. Oceanogr Acta 4:465–474

    Google Scholar 

  • Krogh A (1934) Dissolved substances as food of aquatic organisms. Biol Rev 6:412–442

    Google Scholar 

  • Langdon CJ (1983) Growth studies with bacteria-free oyster (Crassostrea gigas) larvae fed on semi-defined artificial diets. Biol Bull 164:227–235

    Google Scholar 

  • Lesser MP (1986) Bacterial endosymbionts of Amphipholis squamata: potential contribution to developmental and embryonic feeding biology. Am Zool 26–22A

    Google Scholar 

  • Lindroth P, Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674

    CAS  Google Scholar 

  • Little C, Gupta BL (1968) Pogonophora: uptake of dissolved nutrients. Nature (London) 218:873–874

    Google Scholar 

  • Livingston DR, Widdows J, Fieth P (1979) Aspects of nitrogen metabolism of the common mussel Mytilus edulis: adaptation to abrupt and fluctuating changes in salinity. Mar Biol 53:41–55

    Google Scholar 

  • Manahan DT (1983a) The uptake of dissolved glycine following fertilization of oyster eggs, Crassostrea gigas (Thunberg). J Exp Mar Biol Ecol 68:53–58

    CAS  Google Scholar 

  • Manahan DT (1983b) The uptake and metabolism of dissolved amino acids by bivalve larvae. Biol Bull 164:236–250

    CAS  Google Scholar 

  • Manahan DT (1986) Net fluxes of amino acids to and from sea water following fertilization of sea urchin eggs. Am Zool 26:5A

    Google Scholar 

  • Manahan DT, Arnold KE (1983) Microspatial variability of free amino acids and ammonia in sea water. Trans Am Geophys Un (EOS) 64:1020

    Google Scholar 

  • Manahan DT, Crisp DJ (1982) The role of dissolved organic material in the nutrition of pelagic larvae: amino acid uptake by bivalve veligers. Am Zool 22:636–646

    Google Scholar 

  • Manahan DT, Crisp DJ (1983) Autoradiographic studies on the uptake of dissolved amino acids from sea water by bivalve larvae. J Mar Biol Assoc UK 63:673–682

    Google Scholar 

  • Manahan DT, Jaeckle WB (1986) Balancing the energy budgets of pelagic larvae: the importance of dissolved organic material. Trans Am Geophys Un (EOS) 67:992

    Google Scholar 

  • Manahan DT, Richardson K (1983) Competition studies on the uptake of dissolved organic nutrients by bivalve larvae (Mytilus edulis) and marine bacteria. Mar Biol 75:241–247

    CAS  Google Scholar 

  • Manahan DT, Wright SH, Stephens GC, Rice MA (1982) Transport of dissolved amino acids by the mussel, Mytilus edulis: demonstration of net uptake from natural sea water. Science 215: 1253–1255

    PubMed  CAS  Google Scholar 

  • Manahan DT, Wright SH, Stephen GC (1983a) Simultaneous determination of net uptake of 16 amino acids by a marine bivalve. Am J Physiol 244:R832-R838

    PubMed  CAS  Google Scholar 

  • Manahan DT, Davis JP, Stephens GC (1983b) Bacteria-free sea urchin larvae: selective uptake of neutral amino acids from sea water. Science 220:204–206

    PubMed  CAS  Google Scholar 

  • McCammon HM, Reynolds WA (1976) Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Mar Biol 34:41–51

    CAS  Google Scholar 

  • McWhinnie MA, Johanneck R (1966) Utilization of inorganic and organic carbon compounds by antarctic Zooplankton. Antarct JUS 1:210

    Google Scholar 

  • McWhinnie MA, Urbanski RJ (1971) Absorption of soluble organic compounds by polar marine Zooplankton. Antarct JUS 6:156–157

    Google Scholar 

  • Mopper K, Lindroth P (1982) Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol Oceanogr 27:336–347

    CAS  Google Scholar 

  • Nell JA, Skeel ME, Dunkley P (1983) Uptake of some dissolved organic nutrients by the Sydney rock oyster, Saccostrea commercialis. Mar Biol 74:313–318

    CAS  Google Scholar 

  • Nishioka D, Killian CE, McGwin-Scully NF (1985) Increased uptake of nucleosides in the activation of sea urchin eggs. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Current comparative approaches. Springer, Berlin Heidelberg New York Tokyo, pp 303–325

    Google Scholar 

  • North BB (1975) Primary amines in California coastal waters: utilization by phytoplankton. Limnol Oceanogr 20:20–27

    CAS  Google Scholar 

  • Pajor AM, Wright SH (1987) L-alanine uptake in brush border membrane vesicles from the gill of a marine bivalve. J Membr Biol 96:209–223

    PubMed  CAS  Google Scholar 

  • Parsons TR (1975) Particulate organic carbon in the sea. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 2. Academic Press, London New York, pp 365–383

    Google Scholar 

  • Pearse JS, Pearse VB (1973) Removal of glycine from solution by the sea urchin Strongylocentrotus purpuratus. Mar Biol 19:281–284

    CAS  Google Scholar 

  • Pequignat E (1966) ‘Skin digestion’ and epidermal absorption in irregular and regular urchins and their probable relation to the outflow of spherule-coelomocytes. Nature (London) 210: 397–399

    Google Scholar 

  • Pequignat E (1972) Some new data on skin-digestion and absorption in urchins and sea stars (Asterias and Henricia). Mar Biol 12:28–41

    Google Scholar 

  • Pequignat E (1973) A kinetic and autoradiographic study of the direct assimilation of amino acids and glucose by organs of the mussel Mytilus edulis. Mar Biol 19:227–244

    CAS  Google Scholar 

  • Pierce SK, Greenberg MJ (1972) The nature of cellular volume regulation in marine bivalves. J Exp Biol 57:681–692

    Google Scholar 

  • Pierce SK, Greenberg MJ (1973) The initiation and control of free amino acid regulation of cell volume in salinity-stressed marine bivalves. J Exp Biol 59:435–446

    CAS  Google Scholar 

  • Pilsum JF van, Taylor D, Bans L (1975) Studies on the uptake of creatine from sea water by the marine annelid, Glycera dibranchiata. Comp Biochem Physiol 51A:611–617

    Google Scholar 

  • Poulet SA, Martin-Jezequel V, Delmas D (1985) Gradient of dissolved free amino acids and phytoplankton in a shallow bay. Hydrobiologia 121:11–17

    CAS  Google Scholar 

  • Preston RL (1986) Uptake and metabolism of D-alanine by marine invertebrates. Am Zool 26:74A

    Google Scholar 

  • Preston RL, Stevens BR (1982) Kinetic and thermodynamic aspects of sodium-coupled amino acid transport by marine invertebrates. Am Zool 22:709–721

    CAS  Google Scholar 

  • Putter A (1909) Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Fisher, Jena Rice MA, Stephens GC (1987) Influx and transepithelial flux of amino acids in the mussel, Mytilus edulis L. J Exp Biol (in press)

    Google Scholar 

  • Rice MA, Wallis K, Stephens GC (1980) Influx and net flux of amino acids into larval and juvenile European flat oysters, Ostrea edulis (L.). J Exp Mar Biol Ecol 48:51–59

    CAS  Google Scholar 

  • Richards KS, Arme C (1979) Transintegumentary uptake of amino acids by the lumbricid earthworm Eisenia foetida. Comp Biochem Physiol 64A:351–356

    Google Scholar 

  • Richards KS, Arme C (1980a) Transintegumentary uptake of D-galactose, D-fructose and 2-deoxy-D-glucose by the lumbricid eathworm Eisenia foetida. Comp Biochem Physiol 66A:209–214

    CAS  Google Scholar 

  • Richards KS, Arme C (1980b) Transintegumentary uptake of sodium acetate by the lumbricid earthworm, Lumbricus rubellus. Comp Biochem Physiol 67A:403–407

    CAS  Google Scholar 

  • Riley RT (1981) α-Methylglucoside transport by the gill of the oyster Ostrea edulis. Biol Bull 161:416–425

    CAS  Google Scholar 

  • Roe P, Crowe JH, Crowe LM, Wickham DE (1981) Uptake of amino acids by juveniles of Carcinonemertes errans (Nemertea). Comp Biochem Physiol 69A:423–427

    CAS  Google Scholar 

  • Schlichter D (1975) The importance of dissolved organic compounds in sea water for the nutrition of Anemonia sulcata Pennant (Coelenterata). In: Barnes H (ed) Proc 9th Eur Mar Biol Symp. Aberdeen Univ Press, Aberdeen, pp 395–405

    Google Scholar 

  • Schlichter D (1978) On the ability of Anemonia sulcata (Coelenterata: Anthozoa) to absorb charged and neutral amino acids simultaneously. Mar Biol 45:97–104

    CAS  Google Scholar 

  • Schlichter D (1984) Cnidaria: permeability, epidermal transport and related phenomena. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 79–95

    Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology. Adaptation and environment, 3rd edn. Cambridge Univ Press, London

    Google Scholar 

  • Schneider EG (1985) Activation of Na+-dependent transport at fertilization in the sea urchin: requirements of both an early event associated with exocytosis and a later event involving increased energy metabolism. Dev Biol 108:152–163

    PubMed  CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley Sons, New York

    Google Scholar 

  • Sepers ABJ (1977) The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52:39–54

    CAS  Google Scholar 

  • Siebers D (1976) Absorption of neutral and basic amino acids across the body surface of two annelid species. Helgol Wiss Meeresunters 28:456–466

    CAS  Google Scholar 

  • Siebers D (1982) Bacterial-invertebrate interactions in uptake of dissolved organic matter. Am Zool 22:723–733

    Google Scholar 

  • Siebers D, Bulnheim HP (1977) Salinity dependence, uptake kinetics, and specifity of amino acid absorption across the body surface of the oligochaete annelid, Enchytraeus albidus. Helgol Wiss Meeresunters 29:473–492

    CAS  Google Scholar 

  • Siebers D, Winkler A (1984) Amino-acid uptake by mussels, Mytilus edulis, from natural sea water in a flow-through system. Helgol Wiss Meeresunters 38:189–199

    Google Scholar 

  • Smith DF (1986) Small-scale spatial heterogeneity in dissolved nutrient concentrations. Limnol Oceanogr 31:167–171

    Google Scholar 

  • Smith DF, Meyer DL, Horner SMJ (1981) Amino acid uptake by the comatulid crinoid, Cenometra bella (Echinodermata) following evisceration. Mar Biol 61:207–213

    Google Scholar 

  • Southward AJ, Southward EC (1968) Uptake and incorporation of labelled glycine by pogonophores. Nature (London) 218:875–876

    Google Scholar 

  • Southward EC (1984) Pogonophora. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 376–388

    Google Scholar 

  • Stephens GC (1960) Uptake of glucose from solution by the solitary coral, Fungia. Science 131:1532

    PubMed  CAS  Google Scholar 

  • Stephens GC (1962) Uptake of organic material by aquatic invertebrates. I. Uptake of glucose by the solitary coral, Fungia scutaria. Biol Bull 123:648–659

    CAS  Google Scholar 

  • Stephens GC (1963) Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worm, Clymenella torquata. Comp Biochem Physiol 10:191–202

    PubMed  CAS  Google Scholar 

  • Stephens GC (1964) Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish-water annelids. Biol Bull 126:150–162

    CAS  Google Scholar 

  • Stephens GC (1968) Dissolved organic matter as a potential source of nutrition for marine organisms. Am Zool 8:95–106

    Google Scholar 

  • Stephens GC (1972) Amino acid accumulation and assimilation in marine organisms. In: Campbell JW, Goldstein L (eds) Nitrogen metabolism and the environment. Academic Press, London New York, pp 155–184

    Google Scholar 

  • Stephens GC (1975) Uptake of naturally occurring primary amines by marine annelids. Biol Bull 149:397–407

    PubMed  CAS  Google Scholar 

  • Stephens GC (1982) Recent progress in the study of “Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer”. Am Zool 22:611–619

    CAS  Google Scholar 

  • Stephens GC, Schinske RA (1961) Uptake of amino acids by marine invertebrates. Limnol Oceanogr 6:175–181

    Google Scholar 

  • Stephens GC, Volk MJ, Wright SH, Backlund PS (1978) Transepidermal transport of naturally occurring amino acids in the sand dollar, Dendraster excentricus. Biol Bull 154:335–347

    CAS  Google Scholar 

  • Stevens BR, Preston RL (1980a) Sodium-dependent steady-state L-alanine accumulation by the body wall of Glycera dibranciata. J Exp Zool 212:139–146

    CAS  Google Scholar 

  • Stevens BR, Preston RL (1980b) The transport of L-alanine by the integument of the marine polychaete, Glycera dibranchiata. J Exp Zool 212:119–127

    CAS  Google Scholar 

  • Stevens BR, Preston RL (1980c) The effect of sodium on the kinetics of L-alanine influx by the integument of the marine polychaete Glycera dibranchiata. J Exp Zool 211:129–138

    Google Scholar 

  • Stewart MG (1977) The uptake and utilization of dissolved amino acids by the bivalve My a arenaria (L.). In: McKlusky DS, Berry AJ (eds) Physiology and behavior of marine organisms. Pergamon Press, New York, pp 165–176

    Google Scholar 

  • Stewart MG (1978) Kinetics of neutral amino-acid transport by isolated gill tissue of the bivalve Mya arenaria (L.). J Exp Mar Biol Ecol 32:39–52

    CAS  Google Scholar 

  • Stewart MG (1979) Absorption of dissolved organic nutrients by marine invertebrates. Oceanogr Mar Biol Annu Rev 17:163–192

    CAS  Google Scholar 

  • Stewart MG (1981) Kinetics of dipeptide uptake by the mussel Mytilus edulis. Comp Biochem Physiol 69A:311–315

    CAS  Google Scholar 

  • Stewart MG (1984) Mollusea. Permeability and epidermal transport. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 486–501

    Google Scholar 

  • Stewart MG, Bamford DR (1975) Kinetics of alanine uptake by the gills of the soft shelled clam Mya arenaria. Comp Biochem Physiol 52A:67–74

    Google Scholar 

  • Stewart MG, Bamford DR (1976) The effect of environmental factors on the absorption of amino acids by isolated gill tissue of the bivalve, Mya arenaria. J Exp Mar Biol Ecol 24:205–212

    Google Scholar 

  • Swinehart JH, Crowe JH, Giannini AP, Rosenbaum DA (1980) Effects of divalent cations on amino acid and divalent cation fluxes in gills of the bivalve mollusc, Mytilus californianus. J Exp Zool 212:389–396

    PubMed  CAS  Google Scholar 

  • Taylor AG (1969) The direct uptake of amino acids and other small molecules from sea water by Nereis virens Sars. Comp Biochem Physiol 29:243–250

    CAS  Google Scholar 

  • Testerman JK (1972) Accumulation of free fatty acids from sea water by marine invertebrates. Biol Bull 142:160–177

    PubMed  CAS  Google Scholar 

  • Thomas JD, Sterry PR, Patience RL (1984) Uptake and assimilation of short chain carboxylic acids by Biomphalaria glabrata (Say), the freshwater pulmonale host of Schistosoma mansoni (Sambon). Proc R Soc London Ser B 222:447–476

    CAS  Google Scholar 

  • Turner RJ (1983) Quantitative studies of cotransport systems: models and vesicles. J Membr Biol 76:1–15

    PubMed  CAS  Google Scholar 

  • Wheatley DN, Inglis MS (1984) Interactions of structurally similar amino acid molecules during uptake into the intracellular acid-extractable pool. Mol Physiol 5:85–98

    CAS  Google Scholar 

  • Williams PJ le B (1975) Biological and chemical aspects of dissolved organic material in sea water. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol 2. Academic Press, London New York, pp 301–363

    Google Scholar 

  • Williams PM, Oeschager H, Kinney P (1969) Natural radiocarbon activity of the dissolved organic carbon in the northeast Pacific Ocean. Nature (London) 224:256–258

    CAS  Google Scholar 

  • Winne D (1973) Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta 298:27–31

    PubMed  CAS  Google Scholar 

  • Woodwell GM, Whittaker RH, Likens WA, Delwiche CC, Botkin DB (1978) The biota and world carbon budget. Science 199:141–146

    PubMed  CAS  Google Scholar 

  • Wright SH (1979) Effect of activity of lateral cilia on transport of amino acids in gills of Mytilus calif ornianus. J Exp Zool 209:209–220

    CAS  Google Scholar 

  • Wright SH (1982) A nutritional role for amino acid transport in filter-feeding marine invertebrates. Am Zool 22:621–634

    CAS  Google Scholar 

  • Wright SH (1985) Multiple pathways for amino acid transport in Mytilus gill. J Comp Physiol B 156:259–267

    CAS  Google Scholar 

  • Wright SH (1987) Alanine and taurine transport by the gill epithelium of a marine bivalve: effect of Na+ on influx. J Membr Biol 95:37–45

    CAS  Google Scholar 

  • Wright SH, Secomb TW (1984) Epidermal taurine transport in marine mussels. Am J Physiol 247:R346–R355

    PubMed  CAS  Google Scholar 

  • Wright SH, Secomb TW (1986) Epithelial amino acid transport in marine mussels: role in net exchange of taurine between gills and sea water. J Exp Biol 121:251–270

    CAS  Google Scholar 

  • Wright SH, Stephens GC (1977) Characteristics of influx and net flux of amino acids in Mytilus calif ornianus. Biol Bull 152:295–310

    PubMed  CAS  Google Scholar 

  • Wright SH, Stephens GC (1978) Removal of amino acid during a single passage of water across the gill of marine mussels. J Exp Zool 205:337–352

    CAS  Google Scholar 

  • Wright SH, Johnson TL, Crowe JH (1975) Transport of amino acids by isolated gills of the mussel Mytilus californianus Conrad. J Exp Biol 62:313–325

    PubMed  CAS  Google Scholar 

  • Wright SH, Becker SA, Stephens GC (1980) Influence of temperature and unstirred layers on the kinetics of glycine transport in isolated gills of Mytilus calif ornianus. J Exp Zool 214:27–35

    PubMed  CAS  Google Scholar 

  • Wright SH, Kippen I, Wright EM (1982) Stoichiometry of Na+-succinate cotransport in renal brush-border membranes. J Biol Chem 257:1773–1778

    PubMed  CAS  Google Scholar 

  • Wright SH, Hirayama B, Kaunitz JD, Kippen I, Wright EM (1983) Kinetics of sodium-succinate cotransport across renal brush border membranes. J Biol Chem 258:5456–5462

    PubMed  CAS  Google Scholar 

  • Wright SH, Southwell UM, Stephens GC (1984) Autoradiographic analysis of amino acid uptake by the gill of Mytilus. J Comp Physiol 154:249–256

    CAS  Google Scholar 

  • Wright SH, Secomb TW, Bradley TJ (1987) Apical membrane permeability of Mytilus gill: influence of ultrastructure, salinity, and competitive inhibitors on amino acid fluxes. J Exp Biol 129:205–230

    CAS  Google Scholar 

  • Youg JD, Ellory JC (1977) Red cell amino acid transport. In: Ellory JC, Lew VL (eds) Membrane transport in red cells. Academic Press, London New York, pp 301 -325

    Google Scholar 

  • Zurburg W, Zwaan A de (1981) The role of amino acids in anaerobiosis and osmoregulation in bivalves. J Exp Zool 215:315–325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, S.H. (1988). Nutrient Transport Across the Integument of Marine Invertebrates. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73375-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73375-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73377-2

  • Online ISBN: 978-3-642-73375-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics