Strained Layer Epitaxy

  • L. C. Feldman
  • M. Zinke-Allmang
  • J. Bevk
  • H.-J. Gossmann
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)


Strained layer epitaxy is a process for the formation of new materials with a strain and composition modulation in the one to one hundred monolayer range. Two aspects of epitaxial growth are discussed in this paper. We first consider the dynamics of the clustering process, a basic limitation in epitaxy, and show that the formation of clusters can be considered as an Ostwald ripening process. A second experiment examines the strain in few monolayer epitaxial films of Ge embedded in Si(100). We show that the strain in these monolayer films is comparable to that expected from bulk elastic constants.


Monolayer Film Angular Scan Island Height Dimensional Island Ostwald Ripening Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Grabow, G. H. Gilmer in Semiconductor-based Heterostructures: Interfacial Structure and Stability, edited by M. L. Green et al. (Metallurgical Soc., Warrendale, 1986) p. 3.Google Scholar
  2. 2.
    I. M. Lifshitz, V. V. Slyozov Sov. Phys. JETP 35,331 (1959)Google Scholar
  3. 3.
    I. M. Lifshitz, V. V. Slyozov J. Phys. Chern. Solids 19, 35 (1961)CrossRefGoogle Scholar
  4. 4.
    W. J. Dunning in Particle Growth in Suspensions, edited by A. L. Smith (Academic Press, London, 1973) p. 3.Google Scholar
  5. 5.
    W. Thomson, Proc. Roy. Soc. Edinburgh 7, 63 (1870)Google Scholar
  6. 6.
    W. Thomson, Phi. Mag. 43,448 (1871)Google Scholar
  7. 7.
    J. W. Gibbs, Trans. Connect. Acad. 3, 108 (1876)Google Scholar
  8. 8.
    W. Ostwald, Z. Phys. Chern. (Leizig) 34,495 (1900).Google Scholar
  9. 9.
    C. Wagner, Z. Electrochem. 65,581 (1961).Google Scholar
  10. 10.
    B. K. Chakraverty, J. Phys. Chern. Solids 28, 2401 (1967).CrossRefGoogle Scholar
  11. 11.
    G. M. Pound, M. T. Simnad, L. Yang, J. Chern. Phys. 22, 1215 (1954).CrossRefGoogle Scholar
  12. 12.
    M. Zinke-Allmang, H.-J. Gossmann, L. C. Feldman, G. J. Fisanick, Proc. of 33rd Nat. Symp. Amer. Vac. Soc. (Baltimore, 1986), to be published in J. Vac. Sci. Technol.; Proc. of Fall Meeting of Material Research Soc., (Boston, 1986), M. Zinke-Allmang and L. C. Feldman, Appl. Phys. Lett. (to be published).Google Scholar
  13. 13.
    W. K. Chu, J. W. Mayer, M. A. Nicolet, in Backscattering Spectrometry, (Academic Press, New York, 1978).Google Scholar
  14. 14.
    T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts and A. Ourmazd, Phys. Rev. Let. 58, 729 (1987).CrossRefGoogle Scholar
  15. 15.
    L. C. Feldman, J. Bevk, B. A. Davidson, H.-J. Gossmann and J. P. Mannaerts, Phys. Rev. Let. (to be published).Google Scholar
  16. 16.
    J. Bevk, J. P. Mannaerts, A. Ourmazd, L. C. Feldman, B. A. Davidson, Appl. Phys. Lett. 49, 286 (1986).CrossRefGoogle Scholar
  17. 17.
    L. C. Feldman, J. W. Mayer, S. T. Picraux, Materials Analysis by Ion Channeling, (Academic Press, New York, 1982).Google Scholar
  18. 18.
    J. H. Barrett, Phys. Rev. B3, 1527 (1971).Google Scholar
  19. 19.
    I. Stensgaard, L. C. Feldman, P. T. Silverman, Surf. Sci. 77, 513 (1978).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • L. C. Feldman
    • 1
  • M. Zinke-Allmang
    • 1
  • J. Bevk
    • 1
  • H.-J. Gossmann
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations