Reproductive Physiology

  • I. P. Callard
  • L. Klosterman
  • Gloria V. Callard


The reproductive biology of the chondrichthyan fishes is remarkably sophisticated. Using both oviparous and viviparous reproductive modes, the group in general has adapted the strategy of giving birth to relatively few young at one time, each representing the investment of a great deal of maternal energy. The oviparous species foreshadow the situation common in oviparous reptiles and universal in birds. On the other hand, viviparous species range from internal incubators, in which large yolked eggs are retained, to other species in which the complexity of placentation and egg yolk reduction approaches the eutherian condition. Further, in certain viviparous elasmobranchs, the phenomenon of histiotrophic nutrition attains an importance and complexity not seen in any other vertebrate group. Associated with the elasmobranch priority on these female reproductive adaptations, internal fertilization, amniote patterns of reproductive tract development, sex differentiation and a typically vertebrate type of reproductive endocrinology are seen for the first time in the vertebrates.


Sertoli Cell Leydig Cell Corpus Luteum Reproductive Physiology Ventral Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amoroso EC (1960) Viviparity in fishes. Symp Zool Soc Lond 1: 153–181Google Scholar
  2. Bigelow HB, Schroeder WC (1948) Sharks. In: Tee-Van J, Vreder CM, Hildebrand SF, Parr AE, Schroeder WC (eds) Fishes of the western North Atlantic, Sears Foundation for Marine Research, New Haven, part 1, pp 449–473Google Scholar
  3. Boisson C, Mattei X, Mattei C (1968) La Spermiogenese de Rhinobatus cemiculus Geof St-Hilaire (Selacien Rhinobatidae). Etude au microscope eléctronique (A). Bull Inst Fondam Afr Noire 30: 659–673, pis 6–8Google Scholar
  4. Bols NC, Boliska SA, Rainville JB, Kasinsky HE (1980) Nuclear basic protein changes during spermiogenesis in the longnose skate and the spiny dogfish. J Exp Zool 212: 423–433PubMedCrossRefGoogle Scholar
  5. Breder CM, Rosen DE (1966) Modes of reproduction in fish. Natural History, Garden City, New YorkGoogle Scholar
  6. Budker P (1958) La viviparité chez les selaciens. In: Grasse PP (ed) Traité de Zoologie, vol 13. Masson, pp 1755–1790Google Scholar
  7. Bullesbach EE, Gowan LK, Schwabe C, Steinetz BG, O’Byrne E, Callard IP (1986) Isolation, purification, and the sequence of relaxin from the spiny dogfish (Squalus acanthias). Eur J Biochem 161: 335–341PubMedCrossRefGoogle Scholar
  8. Bullesbach EE, Schwabe C, Callard IP (1987) Relaxin from an oviparous species, the skate (Raja erinacea). Biochem Biophys Res Commun 143: 273–280PubMedCrossRefGoogle Scholar
  9. Callard GV, Mak P (1985) Exclusive nuclear location of estrogen receptors in Squalus testis. Proc Natl Acad Sci USA 82: 1336–1340PubMedCrossRefGoogle Scholar
  10. Callard GV, Petro Z, Ryan KJ (1978) Phylogenetic distribution of aromatase and other androgen converting enzymes in the central nervous system. Endocrinology 103: 2283–2290PubMedCrossRefGoogle Scholar
  11. Callard GV, Pudney JP, Mak P, Canick JA (1985) Stage-dependent changes in steroidogenic enzymes and estrogen receptors during spermatogenesis in the testis of the dogfish, Squalus acanthias. Endocrinology 117: 1328–1335PubMedCrossRefGoogle Scholar
  12. Callard IP, Ho S-M (1987) Vitellogenesis and viviparity. In: Chester-Jones I, Ingleton PM, Phillips JG (eds) Fundamentals of comparative vertebrate endocrinology. Plenum, New York, pp 257–281Google Scholar
  13. Callard IP, Koob TJ (1982) Relaxin: Speculations on its physiologic importance in some non-mammalian species. In: Steinetz BG, Schwabe C, Weiss G (eds). Ann NY Acad Sci 380: 163–173Google Scholar
  14. Callard IP, Leathern JH (1965) In vitro steroid synthesis by the ovaries of elasmobranchs and snakes. Arch Anat Morphol Exp 54: 35–38Google Scholar
  15. Callard IP, Callard GV, Lance V (1978) Nonmammalian models in reproduction research. In: Alexander NJ (ed) Animal models for research on contraception and fertility. Harper and Row, New York, pp 346–359Google Scholar
  16. Callard IP, Ho S-m, Gapp DA, Taylor S, Danko D, Wulczyn G (1980) Estrogens and estrogenic actions in fish, amphibians and reptiles. In: Machlan JA (ed) Estrogens in the environment, vol 5. Elsevier/North Holland, New York, pp 213–237Google Scholar
  17. Chieffi G (1967) The reproductive system of elasmobranchs. Developmental and endocrinological aspects. In: Gilbert P, Mathewson RF, Rail DP (eds) Sharks, Skates and Rays, Johns Hopkins, Baltimore, pp 553–550Google Scholar
  18. Chieffi G, Lupo di Prisco C (1961) Identification of estradiol-17ß, testosterone and its precursors from Scyliorhinus stellaris testes. Nature (Lond) 190: 169–170CrossRefGoogle Scholar
  19. Chieffi G, Della Corte F, Botte V (1961) Osservazioni sui tessuto interstiziale del testiculo dei Selaci. Boll Zool 28: 211–217CrossRefGoogle Scholar
  20. Christensen AK (1975) Leydig cells. In: Hamilton DW, Greep RO (eds) Male reproductive system, American Physiological Society, Washington DC, pp 57–94 (Handbook of Physiology, vol 5, Endocrinology)Google Scholar
  21. Clark RS (1922) Rays and skates (Raiae) No 1. Egg capsules and young. J Mar Biol Assoc UK 12: 577–643Google Scholar
  22. Collenot G (1969) Etude biométrique de la croissance relative des pterygopodes chez la roussette Scyliorhinus canícula (L). Cah Biol Mar 10: 309–323Google Scholar
  23. Collenot G (1970) Apparition et évolution de l’activité endocrine du testicule de Scyliorhinus canícula L. (Elasmobranche). Ann Embryol Morphog 2: 461–477Google Scholar
  24. Collenot G, Damas D (1975) Mise en évidence de la nature proteique de corps énigmatiques présents dans le testicule de Scyliorhinus canícula L. (Elasmobranche). Cah Biol Mar 16: 39–46Google Scholar
  25. Collenot G, Damas D (1980) Etude ultrastructurale de la cellule de Sertoli au cours de la spermiogenèse chez Scyliorhinus canícula L. Cah Biol Mar 21: 209–219Google Scholar
  26. Collenot G, Ozon R (1964) Mise en évidence biochimi que et histochimique d’une 5–3b-hydroxysteroide deshydrogenase dans le testicule de Scyliorhinus canícula L. Bull Soc Zool Fr 89: 577–587Google Scholar
  27. Craik JCA (1978 a) Plasma levels of vitellogenin in the elasmobranch Scyliorhinus canícula L (lesser spotted dogfish). Comp Biochem Physiol 60B: 9–18CrossRefGoogle Scholar
  28. Craik JCA (1978 b) Kinetic studies of vitellogenin metabolism in the elasmobranch Scyliorhinus canícula L. Comp Biochem Physiol 61 A: 355–361CrossRefGoogle Scholar
  29. Craik JCA (1978 c) An annual cycle of vitellogenesis in the elasmobranch, Scyliorhinus canícula L. J Mar Biol Assoc UK 58: 719–726CrossRefGoogle Scholar
  30. Craik JCA (1978 d) The effects of oestrogen treatment on certain plasma constituents associated with vitellogenesis in the elasmobranch, Scyliorhinus canícula L. Gen Comp Endocrinol 35: 455–464PubMedCrossRefGoogle Scholar
  31. Cuevas ME, Callard GV (1986) Characterization and stage-dependent distribution of an estrogen sulfotransferase in the testis of the dogfish Squalus acanthias. Bull Mt Desert Isl Biol Lab 26: 40–42Google Scholar
  32. Darrow DC, Fletcher GL (1972) Quantification of testosterone and testosterone glucuronide in testicular and peripheral plasma of mature thorny skate (Raja radiata). Gen Comp Endocrinol 19: 373–375PubMedCrossRefGoogle Scholar
  33. Della Corte D, Botte V, Chieffi G (1961) Ricerca istochimica dell’attività della steroide 3b-olo-deidrogenase nel testiculo de Torpedo marmorata Risso e di Scyliorhinus stellaris (L.). Atti Soc Peloritana Sci Fis Mat Nat 7: 393–397Google Scholar
  34. Dobson S, Dodd JM (1977a) Endocrine control of the testis in the dogfish Scyliorhinus canícula L. I. Effects of partial hypophysectomy on gravimetric, hormonal and biochemical aspects of testis function. Gen Comp Endocrinol 32: 41–52PubMedCrossRefGoogle Scholar
  35. Dobson S, Dodd JM (1977 b) Endocrine control of the testis in the dogfish Scyliorhinus canícula L. H. Histological and ultrastructural changes in the testis after partial hypophysectomy (ventral lobectomy). Gen Comp Endocrinol 32: 53–71PubMedCrossRefGoogle Scholar
  36. Dobson S, Dodd JM (1977 c) The roles of temperature and photoperiod in the response of the testis of the dogfish, Scyliorhinus canícula L. to partial hypophysectomy (ventral lobectomy). Gen Comp Endocrinol 32:.114–115PubMedCrossRefGoogle Scholar
  37. Dodd JM (1972) Ovarian control of cyclostomes and elasmobranchs. Am Zool 12: 325–339Google Scholar
  38. Dodd JM (1977) The structure of the ovary of non-mammalian vertebrates. In: Zuckerman S, Weir B (eds) The ovary, 2nd edn, vol 1. Academic Press, New York, pp 219–263Google Scholar
  39. Dodd JM (1983) Reproduction in cartilaginous fishes. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish Physiology, vol IX, Reproduction Pt A, Endocrine Tissues and Hormones. Academic Press, New York, pp 31–95CrossRefGoogle Scholar
  40. Dodd JM, Goddard CK (1961) Some effects of oestradiol benzoate on the reproductive ducts of Scyliorhinus canícula. Proc Zool Soc Lond 137: 325–332Google Scholar
  41. Dodd JM, Sumpter JP (1984) Fishes. In: Lamming GE (ed) Marshall’s physiology of reproduction, 4th edn. Churchill Livingstone, Edinburgh, pp 1–126Google Scholar
  42. Dodd JM, Evennett PJ, Goddard CK (1960) Reproductive endocrinology in Cyclostomes and elasmobranchs. Symp Zool Soc Lond 1: 77–103Google Scholar
  43. Dodd JM, Dodd MHI, Duggan RT (1983) Control of reproduction in elasmobranch fishes. In: Rankin JC, Pitcher TJ, Duggan R (eds) Control process in fish physiology. Wiley Interscience, pp 221–245Google Scholar
  44. Dorrington JH, Moon YS, Armstrong DT (1975) Estradiol-17B biosynthesis in cultured granulosa cells from hypophysectomized and immature rats: stimulation by follicle-stimulating hormone. Endocrinology 97: 1328–1331PubMedCrossRefGoogle Scholar
  45. Duit MH (1976) The ovarian cycle of the cuckoo ray, Raja naevus (Muller and Henle) in the Celtic Sea. J Fish Biol 8: 199–207CrossRefGoogle Scholar
  46. Falck B (1959) Site of production. of oestrogen in rat ovary as studied in microtransplants. Acta Physiol Scand 47, suppl 163: 1–101CrossRefGoogle Scholar
  47. Fange R, Pulsford A (1983) Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus canicula L. Cell Tissue Res 230: 337–351PubMedCrossRefGoogle Scholar
  48. Fawcett DW (1975) Ultrastructure and function of the Sertoli cell. In: Hamilton DW, Greep RO (eds) Male reproductive system, American Physiological Society, Washington DC, pp 21–56 (Handbook of physiology, vol 5, Endocrinology)Google Scholar
  49. Fletcher GL, Hardy DC, Idler DR (1969) Testosterone production and metabolic clearance rates in sexually mature and female Raja radiata. Endocrinol 85: 552–560CrossRefGoogle Scholar
  50. Freeman HC, Idler DR (1972) Binding affinities of blood proteins for sex hormones and corticosteroids in fish. Steroids 17: 233–250CrossRefGoogle Scholar
  51. Gilbert SG (1973) Pictorial anatomy of the dogfish, University of Washington Press, SeattleGoogle Scholar
  52. Gudger EW (1940) The breeding habits, reproductive organs, and external embryonic development of Chlamydoselachus based on notes and drawings left by Bashford Dean. In: Gudger EW (ed) Bashford Dean memorial volume — Arcahic fishes. American Museum of Natural History, New York, pp 521–646Google Scholar
  53. Gusse M, Chevaillier P (1978) Ultrastructural and chemical study of chromatin during spermiogenesis of fish Scyliorhinus caniculus. Cytobiologie 16: 421–443PubMedGoogle Scholar
  54. Hamlett WC, Wourms JP (1984) Ultrastructure of the pre-implantation shark yolk sac placenta. Tissue Cell 16: 613–625PubMedCrossRefGoogle Scholar
  55. Hamlett WC, Wourms JP, Hudson JS (1985 a) Ultrastructure of the full-term shark yolk sac placenta. I. Morphology and cellular transport at the fetal attachment site. J Ultrastruct Res 91: 192–206PubMedCrossRefGoogle Scholar
  56. Hamlett WC, Wourms JP, Hudson JS (1985 b) Ultrastructure of the full-term shark yolk sac placenta. II. The smooth, proximal segment. J Ultrastruct Res 91: 207–220PubMedCrossRefGoogle Scholar
  57. Hamlett WC, Wourms JP, Hudson JS (1985 c) Ultrastructure of the full-term shark yolk sac placenta. III. The maternal attachment segment. J Ultrastruct Res 91: 221–231PubMedCrossRefGoogle Scholar
  58. Hamlett WC, Schwartz FJ, Dio LJA (1987) Subcellular organization of the yolk syncytial-endoderm complex in the preimplantation yolk sac of the shark, Rhizoprionoden terranovae. Cell Tissue Res 247:275–285PubMedCrossRefGoogle Scholar
  59. Hisaw FL, Albert A (1947) Observations on the reproduction of the spiny dogfish, Squalus acanthias. Bull Mt Desert Isl Biol Lab 92: 187–199CrossRefGoogle Scholar
  60. Hisaw FL, Hisaw FL Jr (1959) Corpora lutea of elasmobranch fishes. Anat Ree 135: 269–277CrossRefGoogle Scholar
  61. Ho S-M, Tsang P, Callard IP (1980) Some properties of a steroid-binding protein in the plasma of the ovoviviparous dogfish, Squalus acanthias, at different stages of the life cycle. Biol Reprod 23: 281–289PubMedCrossRefGoogle Scholar
  62. Ho S-M, Kleis SM, Pherson R, Heiserman GJ, Callard IP (1982) Regulation of vitellogenesis in reptiles. Herpetologica 38: 40–50Google Scholar
  63. Hoar WS (1969) Reproduction. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 3. Academic Press, New York, pp 1–72Google Scholar
  64. Hogarth PJ (1976) Viviparity. Edward Arnold, LondonGoogle Scholar
  65. Holden MJ (1965) The stocks of spurdogs (Squalus acanthias L) in British waters and their migrations. Fish Invest Lond, Ser 2, vol 24, part 4, p 20Google Scholar
  66. Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. University Press, CambridgeGoogle Scholar
  67. Holstein AF (1969) Zur Frage der lokalen Steuerung der Spermatogenese beim Dornhai (Squalus acanthias L). Z Zellforsch 93: 265–281PubMedCrossRefGoogle Scholar
  68. Huang ES-R, Kao KJ, Nalbandov AV (1979) Synthesis of sex steroids by cellular compartments of chicken follicles. Biol Reprod 20: 454–461PubMedCrossRefGoogle Scholar
  69. Idler DR, Truscott B (1966) Identification and quantification of testosterone in peripheral plasma of skate. Gen Comp Endocrinol 7: 375–383CrossRefGoogle Scholar
  70. Jenkins N, Joss JP, Dodd JM (1980) Biochemical and autoradiographic studies on the oestradiolconcentrating cells in the diencephalon and pituitary gland of the female dogfish (Scyliorhinus canicula L). Gen Comp Endocrinol 40: 211–219PubMedCrossRefGoogle Scholar
  71. Jones RC, Jones N, Djakiew D (1984) Luminal composition and maturation of spermatozoa in the male genital ducts of the Port Jackson sharl Heterodontus portusjacksoni. J Exp Zool 230: 417–426CrossRefGoogle Scholar
  72. Kagawa H, Young G, Adachi S, Nagahama Y (1982) Estradiol-17ß production in amago salmon (Oncorhynchus rhodurus) ovarian follicles: role of the theca and granulosa cells. Gen Comp Endocrinol 47: 440–448PubMedCrossRefGoogle Scholar
  73. Kime DE (1978) Steroid biosynthesis by the testes of the dogfish Scyliorhinus caniculus. Comp Biochem Physiol 71B: 675–679Google Scholar
  74. Klosterman LL, Callard IP (1986) Progesterone production by enzymatically dispersed cells from corpora lutea of the spiny dogfish, Squalus acanthias. Bull Mt Desert Isl Biol Lab 26: 119–121Google Scholar
  75. Koob TJ, Callard IP (1985) Progesterone treatment causes early oviposition in Raja erinacea. Bull Mt Desert Isl Biol Lab 25: 138–139Google Scholar
  76. Koob TJ, Laffan J J, Callard IP (1984) Effects of relaxin and insulin on reproductive tract size and early fetal loss in Squalus acanthias. Biol Reprod 31: 231–238PubMedCrossRefGoogle Scholar
  77. Koob TJ, Tsang P, Callard IP (1986) Plasma estradiol, testosterone, and progesterone levels during the ovulatorv cvcle of the skate (Raja erinacea). Biol Reprod 35: 267–275PubMedCrossRefGoogle Scholar
  78. Lance V, Callard IP (1969) A histochemical study of ovarian function in the ovo viviparous elasmobranch, Squalus acanthias. Gen Comp Endocrinol 13: 255–267PubMedCrossRefGoogle Scholar
  79. Lance V, Callard IP (1978) Gonadotrophic activity in pituitary extracts from an elasmobranch (Squalus acanthias L). J Endocrinol 78: 149–150PubMedCrossRefGoogle Scholar
  80. Leigh-Sharpe WH (1920) the comparative morphology of the secondary sexual characters of elasmobranch fishes. Mem 1, J Morphol 34: 245–265CrossRefGoogle Scholar
  81. Lohberger J (1910) Ueber zwei riesige Embryonen von Lamma (Beiträge zur Naturgeschichte Ostasiens). Abh Bayer Akad Wiss 4, suppl 2: 1–15Google Scholar
  82. Lupo di Prisco C, Vallano C, Chieffi G (1967) Steroid hormones in the plasm of the elasmobranch Torpedo marmorata at various stages of the sexual cycle. Gen Comp Endocrinol 8: 325–331PubMedCrossRefGoogle Scholar
  83. Mak P, Callard GV (1987) A novel sex steroid binding protein (SBP) in the testis of the spiny dogfish Squalus acanthias. Gen Comp Endocrinol 68: 104–112PubMedCrossRefGoogle Scholar
  84. Mann T (1960) Serotonin (5-hydroxytryptamine) in the male reproductive tract of the spiny dogfish. Nature (Lond) 188: 941–942CrossRefGoogle Scholar
  85. Mann T, Prosser CL (1963) Uterine response to 5-hydroxytryptamine in the clasper-siphon secretion of the spiny dogfish Squalus acanthias. Biol Bull 125: 384–385Google Scholar
  86. Maren TH, Rawls JA, Burger JW, Myers AC (1963) The alkaline (Marshall’s) gland of the skate. Comp Biochem Physiol 10: 1–16PubMedCrossRefGoogle Scholar
  87. Matthews LH (1950) Reproduction in the basking shark, Ceterohinus maximus (Gunner). Philos Trans R Soc Lond 234B: 247–316CrossRefGoogle Scholar
  88. Mattison A, Fange R (1982) The cellular structure of the Lsydig organ in the shark, Etmopterus spinax (L). Biol Bull 162: 182–194CrossRefGoogle Scholar
  89. Meilinger JCA, Dubois MP (1973) Confirmation, par l’immunofluorescence, de la fonction corticotrope du lobe rostral et de la fonction gonadotrope du lobe ventral de l’hypophyse d’un poisson cartilagineux, la torpille marbree (Torpedo marmorata). C R Acad Sci 276: 1979–1981Google Scholar
  90. Meilinger JP (1966) Stades de la spermatogenèse chez Scyliorhinus caniculus (L): Description, données histochimiques, variations normales et expérimentales. Z Zellforsch 67: 653–673CrossRefGoogle Scholar
  91. Metten H (1939) Studies on the reproduction of the dogfish. Philos Trans R Soc Lond 230B: 217–238CrossRefGoogle Scholar
  92. Metten H (1941) Studies on the reproduction of the dogfish. Proc R Soc Lond 230: 217–238Google Scholar
  93. Moore JES (1895) On the structural changes in the reproductive cells during the spermatogenesis of elasmobranchs. J Microcs 38: 275–313Google Scholar
  94. Moyne G, Collenot G (1982) Unusual nucleolar fine structure in the Sertoli cells of the dogfish Scyliorhinus canicula (L). Biol Cell 44: 239–248Google Scholar
  95. Needham J (1950) Biochemistry and morphogenesis. University Press, CambridgeGoogle Scholar
  96. Parvinen M (1982) Regulation of the seminiferous epithelium. Endocr Rev 3: 404–417PubMedCrossRefGoogle Scholar
  97. Picon R (1962) Recherches sur la differentiation sexuelle de l’embryon de Leptocharias smithii. Arch Anat Microsc Morphol Exp 51: 541–576Google Scholar
  98. Pilsworth LM, Setchell BP (1981) Spermatogenic and endocrine functions of the tests of invertebrate and vertebrate animals. In: Burger H, de Kretster D (eds) The Testis, Raven, New York, pp 9–38Google Scholar
  99. Pratt HL (1979) Reproduction in the blue shark, Prionace glauca. Fish Bull 77: 445–470Google Scholar
  100. Pudney JP, Callard GV (1984 a) Development of agranular reticulum in Sertoli cells of the testis of the dogfish Squalus acanthias during spermatogenesis. Anat Ree 209: 311–321CrossRefGoogle Scholar
  101. Pudney JP, Callard GV (1984b) Identification of Leydig-like cells in the testis of the dogfish Squalus acanthias. Anat Ree 209: 323–330CrossRefGoogle Scholar
  102. Pudney JP, Callard GV (1986) Sertoli cell cytoplasts in the semen of the spiny dogfish Squalus acanthias. Tissue Cell 18: 375–382PubMedCrossRefGoogle Scholar
  103. Ranzi S (1932) Le basi fisio-morfologische dello sviluppo embrionale dei Selaci-Parti I, Publ Staz Zool Napoli 13:209–290Google Scholar
  104. Ranzi S (1934) Le basi fisio-morfoligische dello sviluppo embrionale dei Selaci-Part II e III. Publ Staz Zool Napoli 13: 331–437Google Scholar
  105. Reinig JW, Daniel LN, Schwabe C, Gowan LK, Steinetz BG, O’Byrne E (1981) Isolation and characterization of relaxin from the sand tiger shark (Odontaspsis taurus). Endocrinology 109: 537–543PubMedCrossRefGoogle Scholar
  106. Retzius G (1902) Über einen Spiralfaser apparat am Kopfe der Spermien der Selachier. Biol Untersuch NF 10:61–64Google Scholar
  107. Richards SW, Merriman D, Calhoun LH (1963) Studies on the marine resources of southern New England. IX. The biology of the little skate, Raja erinacea mitchell. Bull Bingham Oceanogr Collect 18: 1–67Google Scholar
  108. Roosen Runge EC (1977) The process of spermatogenesis in animals. Cambridge University Press, LondonGoogle Scholar
  109. Ruh MF, Singh RK, Mak P, Callard GV (1986) Tissue and species specificity of unmasked nuclear acceptor sites for the estrogen receptor of Squalus testes. Endocrinology 118: 811–818PubMedCrossRefGoogle Scholar
  110. Rusaouen M (1978) Etude ultrastructurale des zones a sécrétions proteiques et glycoproteiques de la glade nidamentaire de la roussette, à maturité. Arch Anat Microsc 67: 107–119Google Scholar
  111. Rusaouen M, Pujol JP, Bocquet J, Veillard A, Borel JP (1976) Evidence of collagen in the egg capsule of the dogfish, Scyliorhinus canícula. Comp Biochem Physiol 53 B: 539–543CrossRefGoogle Scholar
  112. Scanes CG, Follett BK, Goos JM (1972) Gonadotrophic activity in the pituitary gland of the dogfish (Scyliorhinus canícula). J Endocrinol 54: 343–344PubMedCrossRefGoogle Scholar
  113. Semper C (1875) Das Urogenitalsystem der Plagiostomen und seine Bedeutung für das der übrigen Wirbeltiere. Arb Zool Inst Würzburg 2: 195–509Google Scholar
  114. Shabanowitz RB, Dhilip RM, Crowell JA, Tres LL, Kierszenbaum AL (1986) Temporal appearance and cyclic behavior of Sertoli cell-specific secretory proteins during the development of the rat seminiferous tubule. Biol Reprod 35: 745–760PubMedCrossRefGoogle Scholar
  115. Short RV (1962) Steroids in the follicular fluid and the corpus luteum of the mare. A “two-cell type” theory of ovarian steroid synthesis. J Endocrinol 24: 59–63PubMedCrossRefGoogle Scholar
  116. Simpson TH, Wardle CS (1967) A seasonal cycle in the testis of the spurdog, Squalus acanthias, and the sites of 3ß-hydroxysteroid dehydrogenase activity. J Mar Biol Assoc UK 47: 699–708CrossRefGoogle Scholar
  117. Simpson TH, Wright RS, Gottfried H (1963) Steroids in the semen of dogfish (Squalus acanthias). J Endocrinol 26: 489–498PubMedCrossRefGoogle Scholar
  118. Simpson TH, Wright RS, Hunt SV (1964 a) Steroid biosynthesis in the testis of the dogfish (Squalus acanthias). J Endocrinol 31: 29–38Google Scholar
  119. Simpson TH, Wright RS, Renfrew J (1964 b) Steroid biosynthesis in the semen of dogfish (Squalus acanthias). J Endocrinol 31: 11–20Google Scholar
  120. Smith H (1929) The composition of the body fluids of elasmobranchs. J Biol Chem 81: 407–419Google Scholar
  121. Smith PL (1985) Electrolyte transport by alkaline gland of little skate Raja erinacea. Am J Physiol 248: R346-R352PubMedGoogle Scholar
  122. Sorberá LA, Schwabe C, Callard IP (1986) The effect of homologous relaxin and neurointermediate lobe extracts on in vivo and in vitro myometrial activity in the viviparous dogfish, Squalus acanthias. Bull Mt Desert Isl Biol Lab 26: 133–135Google Scholar
  123. Springer S (1948) Oviphagous embryos of the sand shark, Carcharías taurus. Copeia 1948: 153–157Google Scholar
  124. Stanley HP (1966) The structure and development of the seminiferous follicle in Scyliorhinus caniculus and Torpedo marmorata (Elasmobranchii). Z Zellforsch 75: 453–468PubMedCrossRefGoogle Scholar
  125. Stanley HP (1971a) Fine structure of spermiogenesis in the elasmobranch fish Squalus suckleyi. Acrosome formation, nuclear elongation and differentiation of the midpiece axis. J Ultrastruct Res 36: 86–102PubMedCrossRefGoogle Scholar
  126. Stanley HP (1971b) Fine structure of spermiogenesis in the elasmobranch fish Squalus suckleyi. Late stages of differentiation and structure of the mature spermatozoan. J. Ultrastruct Res 36: 103–118PubMedCrossRefGoogle Scholar
  127. Stanley HP (1983) The fine structure of spermatozoa of Hydrolagus colliei (Chondrichthyes, Holocephali). J Ultrastruct Res 83: 184–194PubMedCrossRefGoogle Scholar
  128. Steinberger E (1971) Hormonal control of mammalian spermatogenesis. Physiol Rev 51: 1–22Google Scholar
  129. Steinetz BG, Beach VH, Kroc RL (1959) The physiology of relaxin in laboratory animals. In: Lloyd CH (ed) Recent progress in the endocrinology of reproduction. Academic Press, New York, pp 389–423Google Scholar
  130. Steinetz BG, O’Byrne EM, Weiss G, Schwabe C (1982) Bioassay methods for relaxin, uses and pitfalls. In: Anderson RR (ed) Relaxin. Plenum, New York, pp 79–104Google Scholar
  131. Stephan MP (1902) L’évolution de la cellule de Sertoli des sélaciens après la spermatogenèse. C R Soc Biol (Paris) 54: 775–776Google Scholar
  132. Sumpter JP, Dodd JM (1979) The annual reproductive cycle of the lesser dogfish, Scyliorhinus canícula L, and its endocrine control. J Fish Biol 15: 687–695CrossRefGoogle Scholar
  133. Sumpter JP, Jenkins N, Dodd J M (1978) Gonadotrophic hormones in the pituitary gland of the dogfish (Scyliorhinus canícula L): distribution and physiological significance. Gen Comp Endocrinol 36:275–285PubMedCrossRefGoogle Scholar
  134. Ten Cate-Hoedemaker NJ (1933) Beiträge zur Kenntnis der Plazentation bei Haien und Reptilien. Der Bau der reifen Plazenta von Mustelus laevis Risso und Seps chalcides Merr. (Chalcides tridactylus Laur.). Z Zellforsch Mikrosk Anat 18: 299–345CrossRefGoogle Scholar
  135. Teshima K, Yoshimura H, Mizue K (1971) Studies on the sharks II. On the reproduction of Japanes dogfish Mustelus manazo (Bleeker). Bull Fac Fish Nagasaki Univ 32: 41–50Google Scholar
  136. Thiebold J J (1964) Contribution a l’étude de l’organogenèse uro-génitale et de son déterminisme chez un poisson elasmobranche. La petite roussette Scyliorhinus caniculus L. Bull Biol Fr Belg 98: 253–347Google Scholar
  137. Tsang P, Callará IP (1983) In vitro steroid production by ovarian granulosa cells of Squalus acanthias. Bull Mt Desert Tsl Biol Lab 23: 78–79Google Scholar
  138. Tsang P, Callard IP (1987 a) Morphological and endocrine correlates of the reproductive cycle of the aplacental viviparous dogfish, Squalus acanthias. Gen Comp Endocrinol 66: 182–189PubMedCrossRefGoogle Scholar
  139. Tsang P, Callard IP (1978 b) Luteal progesterone production and regulation in the viviparous dogfish, Squalus acanthias. J Exp Zool 241: 377–382CrossRefGoogle Scholar
  140. Vernon RG, Go VLW, Fritz IB (1975) hormonal requirement of the different cycles of the seminiferous epithelium during reinitiation of spermatogenesis in long term hypophysectomized rats. J Reprod Fértil 42: 77PubMedCrossRefGoogle Scholar
  141. Widakowich V (1907) Über eine Verschlußvorrichtung im Eileiter von Squalus acanthias. Zool Anz 31: 636–643Google Scholar
  142. Woodhead AD, Eichenholz PW, Guarino AM (1976) Results of dogfish collections: Frenchman’s Bay, 1976. Bull Mt Desert Tsl Biol Lab 16: 108–109Google Scholar
  143. Woodhead DM J (1969) Effects of estradiol and thyroxine upon the plasma calcium content of a shark, Scyliorhinus canícula. Gen Comp Endocrinol 13: 310–312PubMedCrossRefGoogle Scholar
  144. Wourms JP (1977) Reproduction and development in chondrichthyan fishes. Am Zool 17: 379–410Google Scholar
  145. Wourms JP (1981) Viviparity: the maternal-fetal relationship in fishes. Am Zool 21: 473–515Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • I. P. Callard
    • 1
    • 2
  • L. Klosterman
    • 1
    • 2
  • Gloria V. Callard
    • 1
    • 2
  1. 1.Department of BiologyBoston UniversityBostonUSA
  2. 2.Mount Desert Island Biological LaboratorySalsbury CoveUSA

Personalised recommendations