Advertisement

On the significance of isolated exclusions in the PGM1 subtype system

  • J. Bertrams
  • W. Weber
  • P. G. Höher
Part of the Advances in Forensic Haemogenetics book series (HAEMOGENETICS, volume 2)

Abstract

PGM1 subtyping by thin layer polyacrylamide gel isoelectric focusing (PAGIF) has become a commonly used part of paternity testing, since the method is simple, highly reproducible and relatively cheap. According to advantageous frequencies of the four common alleles PGM1*1A or a1(0.6356), PGM1*1B or a3(0.1194), PGM1*2A or a2(0.1910), and PGM1*2B or a4(0.0525) the exclusion probability increases from about 15% with conventional PGM1 typing to over 30% with isoelectric focusing techniques (IEF). The practicability of PGM1 subtyping for paternity testing is, however, restricted not only by a relatively high frequency of silent alleles, of partially deficient alleles, and of a large number of variants, but especially by the occurrence of incompatible heterozygous mother-child pairs and isolated exclusions.

Keywords

Paternity Testing Silent Allele Deficient Allele Globule Rouge Advantageous Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertrams J, Hintzen U, Barberan F (1986) A new partially deficient variant in the phosphoglucomutase 1 system, PGM*W31. Hum. Genet. 72: 177–178PubMedCrossRefGoogle Scholar
  2. Brinkmann B, Koops E, Klopp O, Heindl K (1972) Inherited partial deficiency of the PGM1111 gene: biochemical and densitometric studies. Ann Hum Genet Lond 35: 363–366CrossRefGoogle Scholar
  3. Brinkmann B, Riemann U, Heide KG, Sachs W, Walcher A, Heindl K, Hoppe H (1973) Demonstration of the silent allele PGMO1O1 in three families and description of a new variant. Z. Rechtsmedizin 73: 207–217CrossRefGoogle Scholar
  4. Driesel AJ, Basler M, Henke J (1982) PGMa1a1 subtyping in Western Germany (Düsseldorf region). Z Rechtsmed 88: 313–316PubMedGoogle Scholar
  5. Dykes DD, Copouls BA, Polesky HF (1982) Routine phenotyping of phosphoglucomutase (PGM1) by thinlayer focusing: Isoelectric points of 14 different variants. Electrophoresis 3: 165–168CrossRefGoogle Scholar
  6. Dykes DD, Kühnl P, Martin W (1985) PGM1 system. Report on the International Workshop, Munich 1983. Am J Hum Genet 37: 1225–31PubMedGoogle Scholar
  7. Ferrell RE, Escallon M, Aguilar L, Bertin T (1984) Erythrocyte phosphoglucomutase: A family study of PGM1 deficient allele. Hum Genet 67: 306–308PubMedCrossRefGoogle Scholar
  8. Fiedler H, Pettenkofer H (1968) Ein “neuer” Phänotyp im Isoenzymsystem der Phosphoglukomutasen des Menschen (PGM1). 1. Mitteilung. Blut 18: 33–34PubMedCrossRefGoogle Scholar
  9. Fiedler H, Pettenkofer H (1969) Ein “neuer” Phänotyp im Isoenzymsystem der Phosphoglukomutasen des Menschen (PGM1). 2. Mitteilung. Blut 18: 358–362PubMedCrossRefGoogle Scholar
  10. Gahr M, Schroter W (1981) Red cell phosphoglucomutase (PGM) deficiency: hereditary defect of the PGM1 locus. Eur J Pediatr 136: 63–65PubMedCrossRefGoogle Scholar
  11. Herzog P, Libich M (1982) A new case of a silent allele in the PGM1 system. Hum Hered 32: 293–295PubMedCrossRefGoogle Scholar
  12. Horai S (1974) A new case of partial deficiency in red cell PGM isoenzyme. Jap J Legal Med 28: 259Google Scholar
  13. Johnsson (1985), personal communication to Wetterling (1985)Google Scholar
  14. Kaplan JC, Alexandre Y, Dreyfuß JC (1970) Deficit selectif dun des loci genetiques de la phosphoglucomutase dans les globules rouges. CR Seances Acad Sci (III) 270: 1061–1063Google Scholar
  15. Kühnl P, Schmidtmann U, Spielmann W (1977) Untersuchungen zum Polymorphismus der Phosphoglucomutase (PGM-E.C.: 2.7.5.1) mittels isoelektrischer Fokussierung auf Polyacrylamidgel (PAGIF). Lectures 7th International Congress of the Society for Forensic Haemo-genetics, Hamburg p 243Google Scholar
  16. Martin W, Ziegler CH (1978) Die Darstellung der Erythrozyten-Isoenzym-systeme ADA (E.C.3.5.4.4) AK (E. C.2.7.4.3) und PGM1 (E.C.2.7.5.1) in der Agarosegel-Dünnschichtelektrophorese. Ärztl Lab 24: 125–129Google Scholar
  17. Martin W (1981) Red cell enzyme groups in paternity testing. Lectures 9th International Congress of the Society for Forensic Haemo-genetics, Bern, p 221Google Scholar
  18. Schon R, Thalhammer O (1977) False positive galactosaemia screening. Lancet I: 43CrossRefGoogle Scholar
  19. Sutton JG, Burgess R (1978) Genetic evidence for four common alleles at the phosphoglucomutase locus (PGM1) detecable by isoelectric focusing. Vox Sang 34: 97–103PubMedCrossRefGoogle Scholar
  20. Ueno S, Yoshida H, Kiribayaski K, Omoto K (1976) The demonstration of the silent PGM1 allele in a Japanese family. Jap J Human Genet 21: 79–84Google Scholar
  21. Wendt GG, Kirchberg G, Rube M, Ritter H (1971) Problematischer Mutter-Kind-Ausschluss mit PGM1. Humangenetik 11: 171–174PubMedCrossRefGoogle Scholar
  22. Wetterling G (1986) Incompatible mother-child pairs found in the PGM1 system. In: Brinkmann B, Henningsen K (eds) Advances in Forensic Haemogenetics Vol I. Springer Verlag Berlin, p 186Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Bertrams
    • 1
  • W. Weber
    • 2
  • P. G. Höher
    • 3
  1. 1.Abteilung für LaboratoriumsmedizinElisabeth KrankenhausEssen 1Germany
  2. 2.Institut für BlutgruppenforschungKöln 91Germany
  3. 3.Hygienisch-Bakteriologisches InstitutKlinikum BarmenWuppertal 2Germany

Personalised recommendations