Skip to main content

Regulation of Human Globin Gene Expression

  • Chapter
Oncogenes and Growth Control
  • 83 Accesses

Abstract

At different stages of human development the various globin genes are sequentially activated and expressed in cells of the erythroid lineage. This precisely controlled process raises a number of important issues concerning the molecular basis of gene regulation. These include: (1) the specificity of globin gene expression in erythroid cells; (2) the sequential activation of the different genes within the α-like and β-like globin gene clusters during development, a phenomenon which has been referred to as hemoglobin switching; and (3) the balanced production of α-like and β-like globin polypeptide chains, implying a coordinate expression of genes located on different chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnou NP, Moulton AD, Keller G, Karlsson S, Papayannopoulou T (1985) Cis-acting sequences that affect the expression of the human fetal y-globin genes. In: Stamatoyannopoulos G, Nienhuis AW (eds) Experimental approaches for the study of hemoglobin switching. Liss, New York, pp 163–182

    Google Scholar 

  • Anagnou NP, Karlsson S, Moylton AD, Keller G, Nienhuis AW (1986) Promoter sequences required for function of the human y-globin gene in erythroid cells. EMBO J 5: 121–126

    CAS  PubMed  Google Scholar 

  • Bazett-Jones DP, Yeckel M, Gottesfeld JM (1985) Nuclear extracts from globin-synthesizing cells enhance globin transcription in vitro. Nature 317: 824–828

    Article  CAS  PubMed  Google Scholar 

  • Bodine DM, Ley TJ (1985) A possible enhancer element lies 3’ to a human fetal Ay-globin gene. Blood 66: 68

    Google Scholar 

  • Chada K, Magram J, Costantini F (1986) Expression of a human fetal globin gene in transgenic mice: implications for the evolution of hemoglobin switching. Nature 319: 685–689

    Article  CAS  PubMed  Google Scholar 

  • Chao MV, Mellon P, Charnay P, Maniatis T, Axel R (1983) The regulated expression of ß-globin genes introduced into mouse erythroleukemia cells. Cell 32: 483–493

    Article  CAS  PubMed  Google Scholar 

  • Charnay P, Henry L (1986) Regulated expression of cloned human fetal Ay-globin genes introduced into marine erythroleukemia cells. Eur. J. of Biochem. (in press)

    Google Scholar 

  • Charnay P, Treisman R, Mellon P, Chao M, Axel R, Maniatis T (1984) Differences in human sand ß-globin gene expression in mouse erythroleukemia cells: the role of intragenic sequences. Cell 38: 251–263

    Article  CAS  PubMed  Google Scholar 

  • Charnay P, Mellon P, Maniatis T (1985) Linker scanning mutagenesis of the 5’-flanking region of the mouse ß-major-globin gene: sequence requirements for transcription in erythroid and nonerythroid cells. Mol. Cell. Biol. 5: 1498–1511

    Google Scholar 

  • Dierks P, von Ooyen A, Cochran MD, Dobkin C, Reiser J, Weissmann C (1983) Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit ßglobin gene in mouse 3T6 cells. Cell 32: 695–706

    Article  CAS  PubMed  Google Scholar 

  • Emerson BM, Felsenfeld G (1984) Specific factor conferring nuclease hypersensitivity at the 5’ end of the chicken adult ß-globin gene. Proc. Natl. Acad. Sci. USA 81: 95–99

    Google Scholar 

  • Gianni AM, Bregni M, Cappellini MD, Fiorelli G, Taramelli R, Giglioni B, Comi P, Ottolenghi S (1983) A gene controlling fetal hemoglobin expression in adults is not linked to the non-a globin cluster. EMBO J 6: 921–925

    Google Scholar 

  • Groudine M, Peretz M, Weintraub H (1981) Transcriptional regulation of hemoglobin switching in chicken embryos. Mol Cell Biol 1: 281–288

    CAS  PubMed  Google Scholar 

  • Groudine M, Kohwi-Shigematsu T, Gelinas R, Stamatoyannopoulos G, Papayannopoulou T (1983) Human fetal to adult hemoglobin switching: changes in chromatin structure of the ßglobin locus. Proc Natl Acad Sci USA 80: 7551–7555

    Article  CAS  PubMed  Google Scholar 

  • Hofer E, Hofer-Warbinek R, Darnell JE (1982) Globin RNA transcription: a possible termination site and demonstration of transcription control correlated with altered chromatin structure. Cell 29: 887–893

    Article  CAS  PubMed  Google Scholar 

  • Humphries RK, Ley T, Turner P, Moulton AD, Nienhuis AW (1982) Differences in human a-land y-globin gene expression in monkey kidney cells. Cell 30: 173–183

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Nienhuis AW (1985) Developmental regulation of human globin genes. Annu Rev Biochem 54: 1071–1108

    Article  CAS  PubMed  Google Scholar 

  • Kioussis D, Wilson F, Khazaie K, Grosveld F (1985) Differential expression of human globin genes introduced in K562 cells. EMBO J 4: 927–931

    CAS  PubMed  Google Scholar 

  • Ley TJ, Chiang YL, Haidaris D, Anagnou N, Wilson VL, Anderson WF (1984) DNA methylation and regulation of the human ß-globin-like genes in mouse erythroleukemia cells containing human chromosome 11. Proc Natl Acad Sci USA 81: 6618–6622

    Article  CAS  PubMed  Google Scholar 

  • Magram J, Chada K, Costantini F (1985) Developmental regulation of a cloned adult ß-globin gene in transgenic mice. Nature 315: 338–340

    Article  CAS  PubMed  Google Scholar 

  • Mavilio F, Giampaolo A, Care A, Migliaccio G, Calandrini M, Russo E, Pagliardi GL, Mastoberardino G, Marinucci M, Peschle C (1983) Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts. Proc Natl Acad Sci USA 80: 6907–6911

    Article  CAS  PubMed  Google Scholar 

  • Mellon P, Parker V, Gluzman Y, Maniatis T (1981) Identification of DNA sequences required for transcription of the human al-globin gene in a new SV40 host-vector system. Cell 27: 279–288

    Article  CAS  PubMed  Google Scholar 

  • Orkin SH, Kazazian HH (1984) The mutation and polymorphism of the human ß-globin gene and its surrounding DNA. Annu Rev Genet 18: 131–171

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulou T, Lindsley D, Kurachi S, Lewison K, Hemenway T, Melis M, Anagnou NP, Najfeld V (1985a) Adult and fetal human globin genes are expressed following chromosomal transfer into MEL cells. Proc Natl Acad Sci USA 82: 780–784

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulou T, Brice M, Kurachi S, Hemenway T, Lewison K, Stamatoyannopoulos G (1985b) A time dependent, chromosome-11 linked mechanism controls fetal to adult hemoglobin switching. Blood 66: 133a

    Google Scholar 

  • Sheffery M, Rifkind RA, Marks PA (1982) Murine erythroleukemia cell differentiation: DNase I hypersensitivity and DNA methylation near the globin genes. Proc Natl Acad Sci USA 79: 1180–1184

    Google Scholar 

  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythoid-specific expression of human ß-globin genes in transgenic mice. EMBO J 4: 1715–1723

    CAS  PubMed  Google Scholar 

  • Treisman R, Green MR, Maniatis T (1983) Cis-and trans-activation of globin gene transcription in transient assays. Proc Natl Acad Sci USA 80: 7428–7432

    Article  CAS  PubMed  Google Scholar 

  • Tuan D, Solomon W, Li, Qiliang, London IM (1985) The ß-like globin gene domain in human erythroid cells. Proc Natl Acad Sci USA 82: 6384–6388

    Article  CAS  PubMed  Google Scholar 

  • Van der Ploeg LHT, Flavell RA (1980) DNA methylation in the human ß-globin locus in erythroid and nonerythroid tissues. Cell 19: 947–958

    Article  PubMed  Google Scholar 

  • Wright S, de Boer E, Grosveld FG, Flavell RA (1983) Regulated expression of the human ß-globin gene family in murine erythroleukemia cells. Nature 305: 333–336

    CAS  Google Scholar 

  • Wright S, Rosenthal A, Flavell R, Grosveld F (1984) DNA sequences required for regulated expression of ß-globin genes in murine erythroleukemia cells. Cell 38: 265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charnay, P. (1986). Regulation of Human Globin Gene Expression. In: Kahn, P., Graf, T. (eds) Oncogenes and Growth Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73325-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73325-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18760-8

  • Online ISBN: 978-3-642-73325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics