Skip to main content
  • 145 Accesses

Abstract

The genus Amaranthus has a worldwide distribution; at least 50 species have been identified. In general they are sturdy, fast-growing plants with a high phytomass production. Several are aggressive weeds (= “pigweeds”), very difficult to eradicate when they invade cultivated fields. The genus is cytogenetically dibasic with species of x = 16 and x = 17 chromosomes, which do not cross in free nature. Taxonomically the genus is a very difficult object. Aellen (1967) and Sauer (1967) tried to order its systematics. They recognized two sections: Blitopsis and Amaranthotypus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aellen P (1967) Amaranthaceae. Illustr Flora Mitteleuropa, Hegi III: 461 –1532

    Google Scholar 

  • Agogino GA (1957) Pigweed seeds dated oldest US food grain. Science Newsl Washingt 72: 345

    Google Scholar 

  • Anonymous (1984) Amaranth, modern prospects for an ancient crop. Natl Acad Res Counc Natl Acad Press, Washington

    Google Scholar 

  • Beadle GW (1972) The mystery of maize. Field Mus Nat Hist Bull 43: 1–11

    Google Scholar 

  • Beadle GW (1977) The origin of Zea mays. In: Reed (ed) Origins of agriculture. Mouton, The Hague, pp 615–635

    Google Scholar 

  • Beadle GW (1980) The ancestry of corn. Sci Am 242: 112–119

    Article  Google Scholar 

  • Becker R, Wheeler E, Lorenz K et al. (1981) A compositional study of amaranth grain. J of Food Sci 46: 1175–1180

    Article  CAS  Google Scholar 

  • Bird RMcK (1980) Maize evolution from 500 B.C. to the present. Biotropica 12: 30–41

    Article  Google Scholar 

  • Bock H (1539) Neues Kräuterbuch. Strassburg

    Google Scholar 

  • Bressani R (1986) Amaranth Newsletter 1–5, Arch Latinoam Nutr INCAP Guatemala

    Google Scholar 

  • Brewbaker J (1979) Diseases of maize in the wet lowland tropics and the collapse of the classic Maya civilisation. Econ Bot 33: 101–118

    Article  Google Scholar 

  • Brieger F (1968) Die Indianer Maisrassen des südamerikanischen Tieflands und ihre Bedeu– tung fair die Züehtung. Die Kulturpfl 16:159– 173

    Google Scholar 

  • Cardenas M (1969) Manual de plantas económicas de Bolivia. Imprenta Icthus, Cochacamba

    Google Scholar 

  • Coons MP (1982) Relationships of Amaranthus caudatus. Econ Bot 36: 129–146

    Article  Google Scholar 

  • Crawford D, Wilson HD (1977) Allozyme variation in Chenopodium fremontii Syst Bot 2: 180–190

    Article  Google Scholar 

  • Doebley JF (1984) Maize introgression into teo-sinte, a reappraisal. Ann Missouri Bot Gard 71: 1100–1113

    Article  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isozyme evidence for reciprocal introgression between maize and Mexican annual teosinte. Econ Bot 9: 203

    Google Scholar 

  • Downton WJS (1973) Amaranthus edulis, a high lysine grain. World Crops 25: 20

    Google Scholar 

  • Gade D (1970) Ethnobotany of canihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ Bot 24: 55–61

    Article  Google Scholar 

  • Galinat WC (1977) The origin of corn. In: GF Sprague (ed) Galinat WC 18. Amer Soc Agr Madison Wise

    Google Scholar 

  • Galinat WC (1978) The inheritance of some traits essential to maize and teosinte. In: Walden (ed) Maize breeding. Wiley, New York

    Google Scholar 

  • Galinat WC, Pasupuleti (1982) Zea diploperennis. II. A review on its significance and potential value for maize improvement. Maydica 27: 213–220

    Google Scholar 

  • Galinat WC (1984) The origin of maize, (a refutation) Science 225: 1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Galinat WC (1985) The missing links between teosinte and maize, a reviews. Mayidica 30: 137–160

    Google Scholar 

  • Gay C (1849) Historia física y politica de Chile.Volotanica, Santiago, Chile

    Google Scholar 

  • Gandarillas S, Gutierrez J (1973) Polyploidy induced in Canahua (Chenopodim palidicaule with colchicine. Bol Genet Castelar Arg 8: 13–16

    Google Scholar 

  • Grant WF (1959) Cytogenetic studies in Amaranthus. III. Chromosome number and phylogenetic aspect. Can J Genet & Cytol 1: 313 328

    Google Scholar 

  • Goldsworthy PR, Fisher NM (eds) (1984) The physiology of tropical field crops. Wiley, Chichester, England

    Google Scholar 

  • Grubben GJ (1976) The cultivation of amaranth as a tropical leaf vegetable. Comm 67, Royal Trop Inst Amsterdam

    Google Scholar 

  • Grubben GJ, Van Slooten D (1981) Genetic resources of amaranths. IBPGR Seer FAO, Rome

    Google Scholar 

  • Hauptli H, Jain K (1984) Genetic structure of landrace populations of the New World grain amaranths. Euphytica 33: 857–884

    Article  Google Scholar 

  • Heiser C (1964) Sangorache and amaranth used ceremonially in Ecuador. Am Anthropol 66: 136–140

    Article  Google Scholar 

  • Heiser CB, Nelson DC (1974) On the origin of the cultivated chenopods (Chenopodium). Genetics 78: 503–505

    Google Scholar 

  • Hoffmann W, Mudra A, Plarre W (1985) Lehrbuch der Züchtung landwirtschaftlicher Kul–turpflanzen. II. ed. Paul Parey Vlg. 434 pp

    Google Scholar 

  • Hunziker AT (1952) Los Pseudocereales de la agricultura indigena de America. Acme Agency, Buenos Airs, p 103

    Google Scholar 

  • Iltis HH (1983) From teosinte to maize, the ca–tastrophic sexual transmutation. Science 222: 886–894

    Article  PubMed  CAS  Google Scholar 

  • litis HH, Doebley JF (1980) Taxonomy of Zea II. Subspecific categories in the Zea mays complex and generic synopsis. Amer J Bot 67: 994–1004

    Article  Google Scholar 

  • Iltis HH, Doebley JF, Guzmann R, Pazy B (1979) Zea diploperennis, a new teosink from Mexico. Science 203: 186–188

    Article  PubMed  CAS  Google Scholar 

  • INCAP (1986) Amaranth Newsletter. Office Archivos Latinam Nutr Guatemala

    Google Scholar 

  • Jain SK, Kulakov PA, Peters I (1984) Genetics and breeding of grain amaranth. In: Proceed I II. Amaranth Conf Rodale, USA

    Google Scholar 

  • Ji–Jeng (1980) Isozyme studies on the origin of cultivated corn. Acta Genet Sin 7: 223–230

    Google Scholar 

  • Joshi BD (1981) Catalogue of amaranth germ plasm. Natl Bur Plant Genet Resources Simla, India, p 42

    Google Scholar 

  • Khoshoo TN, Pal M (1972) Cytogenetic patterns in amaranthus. Chromosomes Today 3:259– 267

    Google Scholar 

  • Kulakov PA, Hauptli H, Jain SK (1985) Genetics of grain amaranth. J Hered 76: 27–30

    Google Scholar 

  • Lorenz K (1981) Amaranthus hypochondriacus, characteristics of the starch and baking potential of the flour. Staerke 33: 149–153

    Article  CAS  Google Scholar 

  • MacNeish RS (1967) A summary of subsistence. In: DS Byers (ed) The prehistory, of the Tehuacan valley. Univ Texas Press Austin 290–309

    Google Scholar 

  • Mangelsdorf P (1965) The evolution of maize. In: Hutchinson (ed) Essays on crop plant evolution. Cambridge Univ Press

    Google Scholar 

  • Mangelsdorf PC (1974) Corn, origin, evolution and improvement. Belknap Press of Harvard Univ Press, Cambridge,

    Google Scholar 

  • Mass Martin FW (ed) 1984 ) Handbook of tropical food crops. CRC Press boca Aaron fl pp 296

    Google Scholar 

  • McClintock B (1929) Chromosome morphology of Zea Mays. Science 69: 629–30

    Article  PubMed  CAS  Google Scholar 

  • McClintock B et al (1981) Chromosome constitution of races of maize. Colegio de Postgraduados, Chapingo, Mexico

    Google Scholar 

  • National Academy of Sciences (1975) Quinoa. In: Underexploited tropical plants with economic value. Washington DC, pp 20–23

    Google Scholar 

  • Pal M, Khoshoo T (1977) Evolution and improvement of cultivated amaranths VIII. Induced autotetraploidy in grain types. Z Pflanzenzücht 78: 135–148

    Google Scholar 

  • Pal M, Pandey R, Khoskoo TN (1982) Evolution and improvement of cultivated amaranths. IX. J Hered 73: 353–356

    Google Scholar 

  • Parodi L, Hernandez JC (1964) El mango, cereal extinguido en cultivo, sobrevive en estado salvaje. Cienc Invest 20: 543–549

    Google Scholar 

  • Pearsall DM (1978) Early movement of maize between Mesoamerica and Southamerica. J Steward Anthrop Soc 9: 41–75

    Google Scholar 

  • Randolph LF (1976) Contributions of wild relatives of maize to the evolutionary history of domesticated maize. Econ Bot 30: 321–345

    Article  Google Scholar 

  • Rao BGS, Galinat WC (1974) The evolution of the American Maydeae. J Heredity 65:335– 340

    Google Scholar 

  • Sauer JD (1967) The grain amaranths and their relatives. A revised taxonomic and geographic survey. Ann Mo Bot Gard 43: 102–137

    Google Scholar 

  • Sauer JD (1969) Identity of archeologic grain amaranths from the valley of Tehuacan, Puebla, Mexico. Amer Antiqu 34: 80–81

    Article  Google Scholar 

  • Senft J, Kaufman C, Bailey N (1982) A comprehensive bibliography, with 2500 entries. Ro– dale Research Center, Rodale, USA

    Google Scholar 

  • Sharma AK, Dey D (1967) A comprehensive cytotaxonomic study on the family Chenopodiaceae. J Cytol Genet India 2: 114–127

    Google Scholar 

  • Simmonds NW (1971) The breedings system of Chenopodium quinoa. I. Male sterility. Heredity 27: 223–235

    Article  Google Scholar 

  • Simmonds NW (1976) Quinoa and relatives. In: Evolution of crop plants. Longman, New York

    Google Scholar 

  • Smith JSC, Lester RN (1980) Biochemical systematicas and evolution of Zea tripsacum and related genera. Econ Bot 34: 201–218

    Article  Google Scholar 

  • Smith CE (1986) Importance of palaeoethno-botanical facts. Econ Bot 40: 267–278

    Article  Google Scholar 

  • Stoner C, Anderson E (1949) Maize among the hill peoples of Assam. Ann Miss Bot Gard 36: 355–404

    Article  Google Scholar 

  • Tapia–Vargas W (1976) La quinoa. Academiea Nac Cienc Bolivia, La Paz

    Google Scholar 

  • Tapia M, Gandarillas H (1979) Quinua y Kaniwa, cultivos andinos. CUD, Bogota pp 288

    Google Scholar 

  • Vietmeyer ND (1982) Amaranth: return to the Aztec mystery crop. In: Yearbook of science in the future. Encycl Britannica, Chicago 111, USA

    Google Scholar 

  • Waiden DB (ed) (1978) Maize breeding and genetics. Wiley, New York, p 794

    Google Scholar 

  • Weber L, Hubbard E, Putnam D, Nelson L, Lehmann J (1988) Amaranth grain production guide. Rodale Press Inc, Emmaus, PA and American Amaranth Institute, Bricelyn, MN

    Google Scholar 

  • Wildenow CL (1790) Historia Amarantharum. Zurich

    Google Scholar 

  • Wilkes HG (1977) Hybridization of maize and teosinte in Mexico and Guatemala. Econ Bot 31: 254–293

    Article  Google Scholar 

  • Wilkes HG, Mangelsdorf PC (1979) Zea diploperennis, the “missing link” in corn’s genealogy. 12 Ann Meet Soc Econ Bot Raleigh N C

    Google Scholar 

  • Wilson HD (1980) Artificial hybridization among species of Chenopodium. Syst Bot 5: 253–263

    Article  Google Scholar 

  • Wilson HD (1988) Quinoa-Biosystematics I. Domesticated populations. Econ Bot 42:461– 477

    Google Scholar 

  • Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of Huazontle (Ch. nuttalliae Safford) domesticated chenopod of Mexico. Am J Bot 66: 198–206

    Article  Google Scholar 

  • Yacovleff E, Herrera FL (1934) El mundo vegetal de los antiguos peruanos. Rev Mus Nac (Lima) 3: 243–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brücher, H. (1989). Farinaceous Plants. In: Useful Plants of Neotropical Origin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73313-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73313-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73315-4

  • Online ISBN: 978-3-642-73313-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics