Skip to main content

Coherence in the Cytoskeleton: Implications for Biological Information Processing

  • Chapter
Biological Coherence and Response to External Stimuli

Abstract

Fröhlich’s model of coherent excitations in biological systems can provide mechanisms for long-range order and cooperativity, factors useful for biomolecular communication and information processing. Fröhlich’s coherence is based on oscillating dipoles in a voltage field, and has been applied primarily to biological membranes (Fröhlich 1970, 1975, 1986). Relatively overlooked, the interiors of living cells contain parallel networks of dynamic protein filamentous polymers which organize and regulate intracellular activities and whose properties strongly suggest communication and intelligence. These networks are collectively termed the cytoskeleton because they were originally thought to provide merely structural bone-like support to living cells. It is now recognized that the cytoskeleton is a dynamic information-processing system capable of organizing cell movement, division, growth and behavior. Thus the cytoskeleton may be described as the nervous system within all cells, ranging from single cell organisms like amoeba and paramecium, to nerve cells (neurons) within the human brain. In neurons, the cytoskeleton accounts for formation and rearrangements of neuronal form and synaptic connections, factors implicated in wide ranges of cognitive functions including neural networking, learning, memory, and consciousness. Components of the cytoskeleton (microtubules, actin and intermediate filaments, microtrabecular lattice) are oriented assemblies of “polar” subunits and have been accordingly described as electrets. The characteristics of polar electrets have been considered sufficient to support Fröhlich-type coherent excitations in the cytoskeleton (Del Giudice et al. 1983c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht-Buehler G (1981) Does the geometric design of centrioles imply their function? Cell Motility 1: 237–245

    Article  Google Scholar 

  • Albrecht-Buehler G (1985) Is the cytoplasm intelligent too? Cell and Muscle Motility 6: 1–21

    Article  Google Scholar 

  • Alvarez J, Ramirez BU (1979) Axonal microtubules: their regulation by the electrical activity of the nerve. Neurosci Lett 15: 19–22

    Article  Google Scholar 

  • Atema J (1973) Microtubule theory of sensory transduction. J Theor Biol 38: 181–190

    Article  Google Scholar 

  • Athenstaedt H (1974) Pyroelectric and piezoelectric properties of vertebrates. Ann NY Acad Sci 238: 68–93

    Article  ADS  Google Scholar 

  • Barrow GM (1961) Physical chemistry. McGraw-Hill, New York

    Google Scholar 

  • Becker JS, Oliver JM, Berlin RD (1975) Flourescence techniques for following interactions of microtubule subunits and membranes. Nature 254: 152–154

    Article  ADS  Google Scholar 

  • Bornens M (1979) The centriole as a gyroscopic oscillator: implications for cell organization and some other consequences. Bio Cell 35 (11): 115–132

    Google Scholar 

  • Burnside B (1974) The form and arrangement of microtubules: an historical, primarily morphological review. Ann NY Acad Sci 253: 14–26

    Article  ADS  Google Scholar 

  • Celaschi S, Mascarenhas S (1977) Thermal stimulated pressure and current studies of bound water in lysozyme. Biophys J 29, 2: 273–277

    Article  Google Scholar 

  • Clegg JS (1981) Intracellular water, metabolism, and cellular architecture. Collect Phenom 3: 289–312

    Google Scholar 

  • Conrad M (1985) On design principles for a molecular computer. Communications of the ACM 28 (5): 464–480

    Article  Google Scholar 

  • Conrad M, Liberman EA (1982) Molecular computing as a link between biological and physical theory. J Theor Biol 98: 239–252

    Article  Google Scholar 

  • Del Giudice E (1986) Collective properties of biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York

    Google Scholar 

  • Del Giudice E, Doglia S, Milani M (1983a) Actin polymerization in cell cytoplasm. In: Earnshaw JC, Stear MW (eds) The application of laser light scattering to the study of biological motion. Plenum, New York, pp 493–497

    Google Scholar 

  • Del Giudice ES, Doglia S, Milani M, Vitiello G (1983b) Spontaneous symmetry breakdown and boson condensation in biology. Phys Rev Lett vol 95 (a): 508–510

    Google Scholar 

  • Del Giudice E, Doglia S, Milani M (1983c) Self focusing and ponderomotive forces of coherent electric waves: a mechanism for cytoskeleton formation and dynamics. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 123–127

    Chapter  Google Scholar 

  • Del Giudice E, Doglia S, Milani M, Vitiello G (1986) Collective properties of biological systems - solitons and coherent electric waves in a quantum field theoretical approach. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 263–287

    Chapter  Google Scholar 

  • Dustin P (1984) Microtubules (2nd Revised Edition). Springer-Verlag, Berlin, p 442

    Google Scholar 

  • Erickson RO (1973) Tubular packing of spheres in biological fine structure. Science 181: 705–716

    Article  ADS  Google Scholar 

  • Fröhlich H (1970) Long-range coherence and the actions of enzymes. Nature 228: 1093

    Article  ADS  Google Scholar 

  • Fröhlich H (1975) The extraordinary dielectric properties of biological materials and the action of enzymes. Proc Natl Acad Sci, USA 72 (11): 4211–4215

    Article  ADS  Google Scholar 

  • Fröhlich H (1986) Coherent excitations in active biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum Press, New York, pp 241–261

    Chapter  Google Scholar 

  • Fuller RB (1975) Synergetics. Macmillan, New York

    Google Scholar 

  • Gershon ND, Porter KR, Trus BL (1985) The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci, USA 82: 5030–5034

    Article  ADS  Google Scholar 

  • Geuens G, Gundersen GG, Nuydens R, Cornelissen F, Bulinski VC, DeBrabander M (1986) Ultra- structural colocalization of tyrosinated and nontyrosinated alpha tubulin in interphase and mitotic cells. J Cell Biol 103 (5), 1883–1893

    Article  Google Scholar 

  • Gibbons IR (1968) The biochemistry of motility. Annu Rev Biochem 37: 521–546

    Article  Google Scholar 

  • Green HS, Triffet T (1985) Extracellular fields within the cortex. J Theor Biol 115 (l): 43–64

    Google Scholar 

  • Gubkin A, Sovokin W (1960) Trans Bull Acad Sci, USSR 24: 246

    Google Scholar 

  • Gutmann F (1986) Some aspects of charge transfer in biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 177–197

    Chapter  Google Scholar 

  • Hameroff SR (1974) Chi: a neural hologram? Am J Chin Med 2 (2): 163–170

    Article  Google Scholar 

  • Hameroff SR (1987) Ultimate computing: biomolecular consciousness and nanotechnology. Elsevier-North Holland, Amsterdam

    Google Scholar 

  • Hameroff SR, Watt RC (1982) Information processing in microtubules. J Theor Biol 98: 549–561

    Article  Google Scholar 

  • Hameroff SR, Smith SA, Watt RC (1984) Nonlinear electrodynamics in cytoskeletal protein lattices. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 567–583

    Chapter  Google Scholar 

  • Hameroff SR, Smith SA, Watt RC (1986) Automaton model of dynamic organization in microtubules. Ann NY Acad Sci 466: 949–952

    Article  ADS  Google Scholar 

  • Jarosch R (1986a) A model for the molecular basis of filament contractility and sliding as demonstrated by helix models. Cell Motil 6 (2): 229–236

    Article  Google Scholar 

  • Jarosch R (1986b) The mechanical behaviour of doublet microtubules simulated by helical models. Cell Motil 6 (2): 209–216

    Article  Google Scholar 

  • Joshi HC, Chu D, Buxbaum RE, Heidemann SR (1985) Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol 101: 697–705

    Article  Google Scholar 

  • Karplus M, McCammon JA (1983) Protein ion channels,gates, receptors. In: King J (ed) Dynamics of proteins: elements and function. Annu Rev Biochem. Benjamin/Cummings Menlo Park, 53: 263–300

    Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–342

    Article  Google Scholar 

  • Koppenol WH (1980) Effect of a molecular dipo le on the ionic strength dependence of a bimolecular rate constant. Identification of the site of reaction. Biophys J 29:493–507 Koruga D (1986) Microtubule screw symmetry: packing of spheres as a latent bioinformation code. Ann NY Acad Sci 466: 953–955

    Google Scholar 

  • Lasek RJ (1981) The dynamic ordering of neuronal cytoskeletons. Neurosci Res Prog Bull 19 (1): 7–13

    Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–256

    Google Scholar 

  • Lee JC, Field DJ, George HJ, Head J (1986) Biochemical and chemical properties of tubulin sub-species. Ann NY Acad Sci 466: 111–128

    Article  ADS  Google Scholar 

  • Mascarenhas S (1974) The electret effect in bone and biopolymers and the bound water problem. Ann NY Acad Sci 238:36–52 Mascarenhas S (1975) Electrets in biophysics. J Electrostat 1: 141–146

    Article  Google Scholar 

  • Matsumoto G, Sakai H (1979) Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. J Membr Biol 50: 1–14

    Article  Google Scholar 

  • Michels B, Dormoy Y, Cerf R, Schulz JA (1985) Ultrasonic absorption in tobacco mosaic virus and its protein aggregates. J Mol Biol 181: 103–110

    Article  Google Scholar 

  • Moran DT, Varela FG (1971) Microtubules and sensory transduction. Proc Natl Acad Sci USA 68: 757–760

    Article  ADS  Google Scholar 

  • Ochs S (1982) Axoplasmic transport and its relation to other nerve functions. Wiley Interscience, New York

    Google Scholar 

  • Porter KR, Tucker R (1981) The ground substance of the living cell. Sci Amer 56–61

    Google Scholar 

  • Roth LE, Pihlaja DJ (1977) Gradionation: hypothesis for positioning and patterning. J Protozool 24: 1, 2–9

    Google Scholar 

  • Roth LE, Pihlaja DJ, Shigenaka Y (1970) Microtubules in the heliazoon axopodium. I. The gradion hypothesis of allosterism in structural proteins. J Ultrastruct Res 30: 7–37

    Article  Google Scholar 

  • Satir P (1984) Cytoplasmic matrix: old and new questions. Cell Biol 99 (l): 235–238

    Google Scholar 

  • Soifer D (1986) Factors regulating the presence of microtubules in cells. In: Soifer D (ed) Dynamic aspects of microtubule biology. Ann NY Acad Sci 466: 1–7

    Google Scholar 

  • Stebbings H, Hunt C (1982) The nature of the clear zone around microtubules. Cell Tissue Res 227: 609–617

    Article  Google Scholar 

  • Vassilev PM, Dronzine RT, Vassileva MP, Georgiev GA (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci Rep 2: 1025–1029

    Article  Google Scholar 

  • Vassilev P, Kanazirska M, Tien HT (1985) Intermembrane linkage mediated by tubulin. Biochem Biophys Res Commun 126 (l): 559–565

    Google Scholar 

  • Wu TM, Austin S (1978) Bose-Einstein condensation in biological systems. J Theor Biol 71: 209–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hameroff, S.R. (1988). Coherence in the Cytoskeleton: Implications for Biological Information Processing. In: Fröhlich, H. (eds) Biological Coherence and Response to External Stimuli. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73309-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73311-6

  • Online ISBN: 978-3-642-73309-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics