Abstract

The recognition of electromagnetic effects by and in humans must begin with man’s conscious perception of the light from the sun and other heavenly bodies, thunder-storms, geomagnetic fields and through magnetite (lodestone) to the navigators’ compass. Gilbert (1600) published his treatise, De Magnete, in which he included an account of the “medicinal virtues” of lodestone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarholt E, Flinn EA, Smith CW (1981) Effects of low-frequency magnetic fields on bacterial growth rate. Phys Med Biol 26: 613–621CrossRefGoogle Scholar
  2. Aarholt E, Flinn EA, Smith CW (1982) Magnetic fields affect the lac operon system. Phys Med Biol 27: 603–610CrossRefGoogle Scholar
  3. Aarholt E, Jaberansari M, Jafary-Asl AH, Marsh PN, Smith CW (1987) NMR conditions and biological systems. In: Marino AA (ed) Handbook of bioelectricity. Marcel Dekker, New York, Chap 26Google Scholar
  4. Ahmed NAG, Smith CW (1978) Further investigations of anomalous effects in lysozyme. Collect Phenom 3: 25–33Google Scholar
  5. Ahmed NAG, Calderwood JH, Frohlich H, Smith CW (1975) Evidence for collective magnetic effects in an enzyme: likelihood of room temperature superconductive regions. Phys Lett 53A: 129–130CrossRefGoogle Scholar
  6. Ahmed NAG, Smith CW, Calderwood JH, Frohlich H (1976) Electric and magnetic properties of lysozyme and other biomolecules. Collect Phenom 2: 155–166Google Scholar
  7. Andreev EA, Beliy MU, Sitko SP (1984) The appearance of characteristic frequencies of the human body. Dokl Akad Nauk Ukr SSR No 10 Ser B Geol Khim Biol Nauki, pp 60–63 (in Russian)Google Scholar
  8. Baker RR (1984) Signal magnetite and direction finding. Phys Technol 15: 30–36ADSCrossRefGoogle Scholar
  9. Baker RR (1985a) Magnetoreception by man and other primates. In: Kirschvink JL, Jones DS, McFadden BJ (eds) Magnetite biomineralisation and magnetoreception in organisms: a new magnetism. Plenum, New York, Chap 26Google Scholar
  10. Baker RR (1985b) Human navigation: A summary of American data and interpretations. In: Kirschvink JL, Jones DS, McFadden BJ (eds) Magnetite biomineralisation and magnetoreception in organisms: a new magnetism. Plenum, New York, Chap 34Google Scholar
  11. Barr ML (1979) The human nervous system. Harper & Row, HagerstownGoogle Scholar
  12. Becker RO, Marino AA (1982) Electromagnetism and life. SUNY, AlbanyGoogle Scholar
  13. Becker RO, Seiden G (1985) The body electric. Morrow, New YorkGoogle Scholar
  14. Bell DA (1960) Electrical noise. Fundamentals and physical mechanism. Van Nostrand, London Brillouin L (1934) Fluctuations de courantdans un conducteur. Helv Phys Acta 7 (suppl 2):47–67 Brown E, Behrens K ( 1985 ) Your body’s responses. Madison Ave, DallasGoogle Scholar
  15. Brügemann H (1984) Diagnose- und Therapieverfahren im ultrafeinen Bioenergie-Bereich. Haug Verlag, HeidelbergGoogle Scholar
  16. Bullock TH (1977) Electromagnetic sensing in fish. Neurosci Res Program Bull 15 (1): 17–22Google Scholar
  17. Callinan P (1985) The mechanism of action of homoeopathic remedies. Complementary Med 3 (l): 35–56Google Scholar
  18. Careri G, de Angelis L, Gratton E, Messana C (1977) Magnetic susceptibility of lysozyme. Phys Lett 60A: 490–491Google Scholar
  19. Choy RYS, Monro JA, Smith CW (1987) Electrical sensitivities in allergy patients. Clin Ecol 4 (3): 93–102Google Scholar
  20. Chu CW, Chen VKH, Sugawara K, Huang CY (1976) Search for magnetic field induced aggregations of lysozyme molecules in dilute aqueous solutions. Solid State Comm 19: 357–359ADSCrossRefGoogle Scholar
  21. Davies KE, Walker IO (1979) The structure and function of chromatin in lower eukaryotes. In: Nicolini CA (ed) Chromatin structure and function. Plenum, New YorkGoogle Scholar
  22. Delgado JMR, Leal J, Monteagudo JL, Gracia MG (1982) Embryological changes induced byGoogle Scholar
  23. weak, extremely lowfrequency electromagnetic fields. J Anat 134:533–551Google Scholar
  24. Didot F (ed) (1861) Nouvelle biographie generale. Firmin Didot, Paris, Col 147–162Google Scholar
  25. Dubrov AP (1978) The geomagnetic field and life: Geomagnetobiology. Plenum, New YorkGoogle Scholar
  26. Edwards GS, Davis CC, Saffer JD, Swicord ML (1985) Microwave-field-driven acoustic modes in DNA. Biophys J 47: 799–807CrossRefGoogle Scholar
  27. Faraday M (1838) Experimental researches in electricity. Taylor and Francis, London, (reprint (1965) Dover )Google Scholar
  28. Fidler JH (1983) Ley lines: their nature and properties. Turnstone, WellingboroughGoogle Scholar
  29. Fröhlich H (1969) Quantum mechanical concepts in biology. In: Marois M (ed) Theoretical physics and biology. North Holland, AmsterdamGoogle Scholar
  30. Fröhlich H (1975) The extraordinary dielectric properties of biological molecules and the action of enzymes. Proc Natl Acad Sci USA 72: 4211–4215ADSCrossRefGoogle Scholar
  31. Fröhlich H (1978) Coherent electric vibrations in biological systems. IEEE Trans MTT 26: 613–617CrossRefGoogle Scholar
  32. Fröhlich H (1980) Biological effects of microwaves and related questions. Adv Electronics Electron Phys 53: 85–152CrossRefGoogle Scholar
  33. Fröhlich H, Kremer F (eds) (1983) Coherent excitations in biological systems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Gauquelin M (1973) The cosmic clocks: from astrology to a modern science. Paladin, St. AlbansGoogle Scholar
  35. Geddes LA, Hoff HE (1971) The discovery of bioelectricity and current electricity - the Galvani - Volta controversy. IEEE Spectrum 8: 38–46CrossRefGoogle Scholar
  36. Gendrin R, Stefant R (1964) Magnetic records between 0.2-30 c/s. In: Blackman WT (ed) Propagation of radio waves at frequencies below 300 kc/s. Pergamon, LondonGoogle Scholar
  37. Gilbert G (1600) De magnete, magnetisque corporibus, et de magneto magnete tellure; physiologia nuoa, plurimis & argumentis & experimentis demonstrata. Short, Londini ( Reprint (1958) Dover )Google Scholar
  38. Gründler W (1985) Frequency-dependent biological effects of low intensity microwaves. In: Chiabrera A, Nicolini C, Schwan HP (eds) Interactions between electromagnetic fields and cells. NATO ASI Ser 97A. Plenum, New York, pp 458–481Google Scholar
  39. Jacobi E, Kruskemper G (1975) Wirkungen simulierter sferics (wetterbedingte, elektromagnetische Strahlungen) auf die Thrombozytenadhäsivität. Inn Med 2: 73–81Google Scholar
  40. Jafarl-Asl AH, Smith CW (1983) Biological dielectrics in electric and magnetic fields. Annu Rep Conf Electrical Insulation & Dielectric Phenom. IEEE Publ 83 CH 1902-6, pp 350–355Google Scholar
  41. Jafary-Asl AH, Solanki SN, Aarholt E, Smith CW (1983) Dielectric measurements on live biological materials under magnetic resonance conditions. J Biol Phys 11: 15–22CrossRefGoogle Scholar
  42. Keeton WT (1979) Avian orientation and navigation. Brit Birds 72: 451–470Google Scholar
  43. Kenyon JN (1983a,b, 1985 ) Modern techniques of acupuncture. Thorsons, Wellingborough, 3 volsGoogle Scholar
  44. König HL (1979) Bioinformation - electrophysical aspects. In: Popp F-A, Becker G (eds) Electromagnetic bio-information. Urban and Schwarzenberg, Munich, pp 25–54Google Scholar
  45. Lakhovsky G (1939) The secret of life. Heinemann Medical, LondonGoogle Scholar
  46. Levine SJ, Parris MK (1985) Antioxidant adaptation, its role in free radical pathology. Allergy Res Gp, San Leandro CAGoogle Scholar
  47. Liboff AR, Williams Jr T, Strong DM, Wistar Jr R (1984) Time-varying magnetic fields: effect on DNA synthesis. Science 223: 818–820ADSCrossRefGoogle Scholar
  48. Ludwig HW (1987) Electromagnetic multiresonance - the base of homeopathy and biophysical therapy. In: Proc 42nd Congr Int Homeopathic Med League, 29 Mar-2 Apr 1987, Arlington, Am Inst Homeopathy, Washington DCGoogle Scholar
  49. Marsh PN (1986) The biological and biochemical effects of microwave and radiofrequency radiation on the bovine eye lens in vitro. Thesis, University of SalfordGoogle Scholar
  50. Miller JB (1972) Food allergy, provocative testing and injection therapy. C.C. Thomas, Springfield ILGoogle Scholar
  51. Monro J (1983) Food allergy in migrane. Proc Nutr Soc 42: 241–246ADSCrossRefGoogle Scholar
  52. Monro J, Carini C, Brostoff J (1984) Migrane is a food-allergic disease. Lancet 2: 719–721CrossRefGoogle Scholar
  53. Moon MJ, Jhon MS (1986) The studies on the hydration energy and water structures in dilute aqueous solution. Bull Chem Soc Jpn 59: 1215–1222CrossRefGoogle Scholar
  54. Nordenström BEW (1983) Biologically closed electric circuits: clinical, experimental and theoretical evidence for an additional circulatory system. Nordic Medical, Stockholm Nordenström BEW (1985) Biokinetic impacts on structure and imaging of the lung: the concept of biologically closed electric circuits. Am J Roentgenol 145: 447–467Google Scholar
  55. O’Neill JJ (1968) The life of Nikola Tesla: a prodigal genius. Nevil Spearman, LondonGoogle Scholar
  56. Pallas-Areny R (1987) On the simulation of real 50/60 Hz electrical fields. IEEE Eng Med & Biol Mag 6: 58CrossRefGoogle Scholar
  57. Piccardi G (1962) The chemical basis of medical climatology. C.C. Thomas, Springfield ILGoogle Scholar
  58. Popp F-A (1979) Photon storage in biological systems. In: Popp F-A, Becker G (eds) Electromagnetic bio-information. Urban and Schwarzenberg, Munich, pp 123–149Google Scholar
  59. Popp F-A (1986a) On the coherence of ultraweak photon emission from living tissues. In: Kilmister CW (ed) Disequilibrium and self-organisation. Reidel, Hingham MA, pp 207–230CrossRefGoogle Scholar
  60. Popp F-A (1986b) Bericht an Bonn. VGM Verlag, Essen, p 85Google Scholar
  61. Rea WJ, Butler JR, Laseter JL, DeLeon IR (1984) Pesticides and brain-function changes in a controlled environment. Clin Ecol 2 (3): 145–150Google Scholar
  62. Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608ADSCrossRefGoogle Scholar
  63. Shaya SY, Smith CW (1977) The effects of magnetic and radiofrequency fields on the activity of lysozyme. Collect Phenom 2: 215–218Google Scholar
  64. Smith CW (1984) Proc 6th Annu Conf IEEE Eng Med and Biol Soc. IEEE Publ No CH2058, pp 176–180Google Scholar
  65. Smith CW (1985) Superconducting areas in living systems. In: Mishra RK (ed) The living state I I.Google Scholar
  66. World Scientific, Singapore, pp 404–420Google Scholar
  67. Smith CW (1986) High sensitivity biosensors and weak environmental stimuli. Proc Colloq Bio- electronics and biosensors. UCNW Bangor 17–19 April 1985. In: Industrial Biotechnology Wales, April/May 1986, Art 4: 2–85Google Scholar
  68. Smith CW, Aarholt E (1982) Possible effects of environmentally stimulated endogenous opiates. Health Phys 43 (6): 929–930Google Scholar
  69. Smith CW, Baker RD (1982) Comments on the paper “Environmental Power-Frequency Magnetic Fields and Suicide”. Health Phys 43: 439–441Google Scholar
  70. Smith CW, Choy R, Monro JA (1985) Water - friend or foe? Lab Pract 34 (10): 29–34Google Scholar
  71. Sorensen CM, Fickett FR, Mockler RC, O’Sullivan WJ, Scott JF (1976) On lysozyme as a possible high temperature superconductor. J Phys C:Solid State Phys 9: L251ADSCrossRefGoogle Scholar
  72. Wever R (1973) Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17 (3): 227–232CrossRefGoogle Scholar
  73. Wever RA (1985) The electromagnetic environment and the circadian rhythms of human subjects”. In: Grandolfo M, Michaelson SM, Rindi A (eds) Static and ELF electromagnetic fields: Biological effects and dosimetry. Plenum, New YorkGoogle Scholar
  74. Williams HN, Sabarth E (1987) In vitro demonstration of homeopathic effects. In: Proc 42nd Congr Int Homeopathic Med League, 29 Mar-2 Apr 1987, Arlington, Am Inst Homeopathy, Washington DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. W. Smith
    • 1
  1. 1.Electronic and Electrical Engineering DepartmentUniversity of SalfordSalfordEngland

Personalised recommendations