Skip to main content

Some Remarks on the Use of Physico-Chemical Methods in Lung Surfactant Research

  • Conference paper
Surfactant Replacement Therapy
  • 116 Accesses

Abstract

Since the introduction of a modified Wilhelmy balance by Clements [1] physico-chemical methods have been of major importance in the development of the concepts concerning lung surfactant (LS) function and the occurrence of RDS [2]. The Langmuir — Wilhelmy method (LWM) has proven a strong means in determining surface properties of single and multicomponent synthetic monolayers [3, 4], as well as of natural surfactants [5, 6]. The LWM showed its value in experiments revealing the influence of many factors — including, temperature, ions, pH, subphase composition, the surface tension (σ) — area (A) relation [7, 8]. However, objections were also raised, both against the LWM and against what might be called the “classical” model of LS function. The former objections mainly concerned leakage of monolayer material and contact-angle problems at the Wilhelmy plate (WP). The objections to the model concerned the existence of a continuous liquid lining layer, the geometry of the alveoli and the relevance of surface tension [9, 10]. In the mid-sixties the oscillating bubble method (OBM) was introduced [11]. This method has certain advantages over the LWM: its small dimensions allow for a better control of temperature, and the required (surfactant) volume is far less than for trough measurements. In addition, no measurement device disturbs the interface. Finally, an often emphasized advantage is the shape similarity between alveolus and bubble [12–14].

Parts of this paper are described in more detail in Gieles [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95: 170–172

    PubMed  CAS  Google Scholar 

  2. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97: 517–523

    CAS  Google Scholar 

  3. Phillips MC, Chapman D (1968) Monolayer characteristics of saturated 1,2 diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta 163: 301–313

    Article  PubMed  CAS  Google Scholar 

  4. Villalonga F (1968) Surface chemistry of L-a-dipalmitoyl lecithin at the air-water interface. Biochim Biophys Acta 163: 290–300

    Article  Google Scholar 

  5. Burnell JM, Kyriakides EC, Edmonds RH, Balint JA (1978) The relationship of fatty acid composition and surface activity of lung extracts. Respir Physiol 32: 195–206

    Article  PubMed  CAS  Google Scholar 

  6. Bienkowski R, Skolnick M (1972) Dynamic behavior of surfactant films. J Colloid Interface Sci 39 (2): 323–330

    Article  CAS  Google Scholar 

  7. Colacicco G, Basu M, Scarpelli EM (1976) PH, temperature, humidity and the dynamic force-area curve of dipalmitoyl lecithin. Respir Physiol 27: 169–186

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi T, Robertson B (1983) Surface adsorption of pulmonary surfactant in relation to bulkphase concentration and presence of CaC12 Respiration 44 (1): 63–70

    CAS  Google Scholar 

  9. Hills BA (1982) Water repellency induced by pulmonary surfactants. J Physiol 325: 175–186

    PubMed  CAS  Google Scholar 

  10. Reifenrath R (1975) The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir Physiol 24: 115–137

    Article  PubMed  CAS  Google Scholar 

  11. Adams FH, Enhorning G (1966) Surface properties of lung extracts. I A dynamic alveolar model. Acta Physiol Scand 68: 23–27

    Article  Google Scholar 

  12. Adams FH, Enhorning G (1966) Surface properties of lung extracts. II Comparison of fetal and adult rabits. Acta Physiol Scand 68: 28–36

    Article  Google Scholar 

  13. Adams FH, Enhorning G (1966) Surface properties of lung extracts. III Changes appearing during first ten minutes after surface formation. Acta Physiol Scand 68: 37–42

    Article  Google Scholar 

  14. Schoedel W, Slama H, Hansen E (1971) Zeitabhängiges Verhalten von Filmen von oberflächenaktivem Material aus Lungalveolen. Pflügers Arch 322: 336–346

    Article  PubMed  CAS  Google Scholar 

  15. Slama H, Schoedel W, Hansen E (1971) Bestimmung der Oberflächeneigenschaften von Stoffen aus den Lungenalveolen mit einer Blasenmethode. Pflügers Arch 322: 255–263

    Article  Google Scholar 

  16. Slama H, Schoedel W, Hansen E (1973) Lung surfactant: film kinetics of the surface of an air bubble during prolonged oscillation of its volume. Respir Physiol 19: 233–243

    Article  PubMed  CAS  Google Scholar 

  17. Gieles P (1987) Methods of measurement for the evaluation of monolayer properties. Development and applications. Thesis, University of Technology, Eindhoven, The Netherlands

    Google Scholar 

  18. Blodgett KB (1935) Films built by depositing successive unimolecular layers on a solid surface. J Am Chem Soc 57: 1007–1022

    Article  CAS  Google Scholar 

  19. Bayramli E, van de Ven TGM, Mason SG (1981) Tensiometric studies on wetting IV. Contact angle and surface pressure relaxation. Colloid and Surfaces 3: 279–293

    Article  CAS  Google Scholar 

  20. van Liempd J, Boonman A, Demel R, Gieles P, Gorree T (1987) Nonselective squeeze-out of DOPC and DOPG from binary mixed monolayers with DPPC. Biochim Biophys Acta 897: 495–501

    Article  PubMed  Google Scholar 

  21. Hills BA, Barrow RE (1984) An “engine” phenomenon displayed by monolayers of a pulmonary surfactant cycled to steady state. Phys Med Biol 29(11): 1399–1408

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gieles, P., Key, T., Van Santvoort, J., Steeghs, A. (1988). Some Remarks on the Use of Physico-Chemical Methods in Lung Surfactant Research. In: Lachmann, B. (eds) Surfactant Replacement Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73305-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73305-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73307-9

  • Online ISBN: 978-3-642-73305-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics