Advertisement

Surfactant Replacement in Acute Respiratory Failure: Animal Studies and First Clinical Trials

  • B. Lachmann
Conference paper

Abstract

The integrity of the surfactant system of the lung is essential for normal breathing. Decreasing the surface tension at the interface between alveoli and air ensures (a) mechanical stabilization of the lung; (b) equal ventilation of differently sized alveoli; (c) stabilization of fluid balance in the lung and protection against lung edema; and (d) adequate function of local defense mechanisms against air-borne, bacterial, and viral infections (for review see [1]). Furthermore, we have recently demonstrated that the pulmonary surfactant system may also be involved in protecting the lung against its own mediators (e.g., angiotensin II) and in protecting the cardiocurculatory system against mediators produced by the lung [2].

Keywords

Xanthine Oxidase Acute Respiratory Failure Free Oxygen Radical Surfactant System Lung Lavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lachmann B, Danzmann E (1984) Acute respiratory distress syndrome. In: Robertson B, Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Hein T, Lachmann B, Armbruster S, Smit JM, Voelkel N, Erdmann W (1987) Pulmonary surfactant inhibits the cardiovascular effects of platelet activating factor (PAF), 5-hydroxytryptamine (5-HT) and angiotensin II. Am Rev Respir Dis 135: A506Google Scholar
  3. 3.
    Lachmann B (1985) Possible function of bronchial surfactant. Eur J Respir Dis 67: 49–61Google Scholar
  4. 4.
    Green GM (1973) Alveolobronchiolar transport mechanisms. Arch Intern Med 31: 109–114CrossRefGoogle Scholar
  5. 5.
    Reifenrath R (1983) Surfactant action in bronchial mucus. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier, Amsterdam, pp 339–347Google Scholar
  6. 6.
    Lachmann B, Becher G (1986) Protective effect of lung surfactant on allergic bronchial constriction in guinea pigs. Am Rev Respir Dis 133: A118Google Scholar
  7. 7.
    Lachmann B, Fujiwara T, Chida S, Morita T, Konishi M, Nakamura K, Maeta H (1981) Improved gas exchange after tracheal instillation of surfactant in the experimental adult respiratory distress syndrome. Crit Care Med 9: 158CrossRefGoogle Scholar
  8. 8.
    Lachmann B, Danzmann E (1984) Acute respiratory distress syndrome. In: Robertson B, Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 505–548Google Scholar
  9. 9.
    Lachmann B (1987) The role of pulmonary surfactant in the pathogenesis and therapy of ARDS. In: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 123–134Google Scholar
  10. 10.
    Lachmann B, Fujiwara T, Chida S, Morita T, Konishi M, Nakamura K, Maeta H (1983) Surfactant replacement therapy in the experimental adult respiratory distress syndrome (ARDS) In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier, Amsterdam, pp 231–235Google Scholar
  11. 11.
    Berggren P, Lachmann B, Curstedt T, Grossmann G, Robertson B (1986) Gas exchange and lung morphology after surfactant replacement in experimental adult respiratory distress syndrome induced by repeated lung lavage. Acta Anaesth Scand 30: 321–328PubMedCrossRefGoogle Scholar
  12. 12.
    Kobayashi T, Kataoka H, Ueda T, Murakami S, Takeda Y, Kokubo M (1984) Effects of surfactant supplement and end-expiratory pressure in lung lavaged animals. J Appl Physiol 57: 995–1001PubMedGoogle Scholar
  13. 13.
    Lachmann B, Bergmann K Ch (1987) Surfactant replacement improves thorax-lung compliance and survival rate in mice with influenza infection. Am Rev Respir Dis 135: A6Google Scholar
  14. 14.
    Lachmann B, Saugstad OD, Erdmann W (1987) Effect of surfactant replacement on respiratory failure induced by free oxygen radicals. In: Schlag G, Redl H (eds) First Vienna shock forum. Part B: Monitoring and treatment of shock. Liss, New York, pp 305–313Google Scholar
  15. 15.
    Lachmann B, Bergmann KC, Winsel K, Müller E, Petro W, Schaffer C, Vogel J (1975) Experimental respiratory distress syndrome after injection of anti-lung serum. III. Chronic experimental trial. Pädiatrie und Grenzgebiete 14: 211–233PubMedGoogle Scholar
  16. 16.
    Lachmann B, Hallman M, Bergmann K Ch (1987) Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage. Exp Lung Res 12: 163–180PubMedCrossRefGoogle Scholar
  17. 17.
    Macklem PT, Proctor DF, Hogg (1970) The stability of peripheral airways. Respir Physiol 8: 191–203PubMedCrossRefGoogle Scholar
  18. 18.
    Saugstad OD (1985) Oxygen radicals and pulmonary damage. Pediatr Pulmonol 1: 167–175PubMedCrossRefGoogle Scholar
  19. 19.
    Saugstad OD, Hallman M, Becher G, Oddoy A, Lachmann B (1984) Protective effect of superoxide dismutase on severe lung damage caused by xanthine oxidase. Pediatr Res 18: 802CrossRefGoogle Scholar
  20. 20.
    Lachmann B (1985) Possible function of bronchial surfactant. Eur J Respir Dis 67: 49–61Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • B. Lachmann

There are no affiliations available

Personalised recommendations