Advertisement

Literatur

Chapter
  • 64 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Allgemeine Grundlagen der Physikalischen Chemie

  1. Denbigh, K.: The principles of chemical equilibrium, 3rd edn. Cambridge University Press, Cambridge, 1971.Google Scholar
  2. Kortüm, G.: Einführung in die chemische Thermodynamik, Verlag Chemie GmbH, Weinheim/Bergstraße, 1966.Google Scholar
  3. Kortüm, G.: Lehrbuch der Elektrochemie, Verlag Chemie GmbH, Weinheim/Bergstraße, 1972.Google Scholar
  4. Moore, W.: Physical chemistry, Longmans, London, 1962.Google Scholar
  5. Swallin, R.A.: Thermodynamics of solids, Wiley, New York, 1962.Google Scholar

Anwendung der Physikalischen Chemie auf dem Gebiet der Mineralogie bzw.Petrologie

  1. Barth, T.F.W.: Theoretical petrology, 2nd edn., Wiley, New York, 1962.Google Scholar
  2. Broecker, W.S. und Oversby, V.M.: Chemical equilibria in the earth. McGraw–Hill, New York, 1971.Google Scholar
  3. Charmichael, I.S.E., Turner, F.J. und Verhoogen, J.: Igneous petrology, McGraw–Hill, New York, 1974.Google Scholar
  4. Ehlers, E.G.: The interpretation of geological phasediagrams, Freeman and Company, San Francisco, 1972.Google Scholar
  5. Ernst, W.G.: Petrologic phase equilibria, Freeman and Company, San Francisco, 1976.Google Scholar
  6. Fraser, D.G.: Thermodynamics in geology, D. Riedel Publishing Company, Dodrecht, 1976.Google Scholar
  7. Froese, E.: Application of thermodynamics in metamorphic petrology, Geological Survey of Canada, Paper 75–43, 1976.Google Scholar
  8. Fyfe, W.S., Price, N.J. and Thompson, A.B.: Developments in geochemistry 1, Fluids in the earth’s crust, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1978.Google Scholar
  9. Garrels, R.M. und Christ, C.L.: Solution, minerals, and equilibria, Harper and Row Publishers, New York, 1965.Google Scholar
  10. Greenwood H.J. (ed): Short course in application of thermodynamics to petrology and ore deposits, MSA Canada, Evergreen Press, 1978.Google Scholar
  11. Kern, R. und Weisbrod, A.: Thermodynamics for geologists, Freeman and Cooper, San Francisco, 1967.Google Scholar
  12. Masing, G.: Ternary systems, introduction to the theory of three component system, Dover Publications, New York, 1960.Google Scholar
  13. Mcdelov–Petrosjan: Thermodynamik der Silikate, VEB Verlag für Bauwesen, Berlin, 1965.Google Scholar
  14. Meyer, K. Physikalisch–chemische Kristallographie, VEB Verlag für Grundstoffindustrie, Leipzig, 1968.Google Scholar
  15. Mueller, R.F. und Saxena, S.K.: Chemical petrology, Springer Verlag, New York, 1977.CrossRefGoogle Scholar
  16. Newton, R.C., Navrotsky, A. und Wood, B.J. (eds): Thermodynamics of minerals and melts. Advances in physical geochemistry, vol. 1, Springer Verlag, New York, 1981.Google Scholar
  17. Petzold, A. und Hinz, W.: Silikatchemie, Einführung in die Grundlagen, Enke–Verlag, Stuttgart, 1979.Google Scholar
  18. Powell, R.: Equilibrium thermodynamics in petrology. An introduction, Harper and Row Publishers, London, 1978.Google Scholar
  19. Predel, B.: Heterogene Gleichgewichte, Steinkopff Verlag, Darmstadt, 1982.Google Scholar
  20. Saxena, S.K.: Thermodynamics of rock–forming crystalline solutions, Springer Verlag, New York, 1973.Google Scholar
  21. Saxena, S.K. (ed) Kinetics and equilibrium in mineral reactions, Advances in physical geochemistry, Springer Verlag, New York, 1983.Google Scholar
  22. Schmalzried, H. und Navrotsky, A.: Festkörperthermodynamik, Chemie des festen Zustandes, Verlag Chemie GmbH. Weinheim/Bergstraße, 1975.Google Scholar
  23. Turner, F.J. und Verhoogen, J.: Igneous and metamorphic petrology, 2nd edn. McGraw–Hill, New York, 1960.Google Scholar
  24. Wood, B.J. und Fraser, D.G.: Elementary thermodynamics for geologists, Oxford University Press, 1976.Google Scholar

Spezielle Literatur

  1. Akimoto, S., Fujisawa, H., und Katsura, T. (1965): The olivine–spinet transition in Fe2SIO4 and NI2SiO4. J. Geophys. Res., 70, 1969–1977.CrossRefGoogle Scholar
  2. Althaus, E. (1969): Das System Al2O3 – SiO2 – H2O. Experimentelle Untersuchungen und Folgerungen für die Petrogenese der metamorphen Gesteine. N. Jb. Miner. Abh., 111, 111–161.Google Scholar
  3. Anderson, P.A.M., Newton, R.C. und Kleppa, O.J. (1977): The enthalpy change of the andalusite–sillimanite reaction and the AI2SiO5 diagram. Am. J. Sci., 277, 585–593.CrossRefGoogle Scholar
  4. Babushka, V., Fiala, J., Kumuzawa, M. und Ohno, I. (1978): Elastic properties of garnet solid–solution series. Phys. Earth Planet. Inter., 16, 157–176.CrossRefGoogle Scholar
  5. Berman, R.G. und Brown, T.H. (1984): A thermodynamic model for multicomponent melts, with application to the system CaO–AI2O3–SiO2• Geochim. Cosmochim. Acta, 48, 661–678.CrossRefGoogle Scholar
  6. Besancon, J.R. (1981): Rate of cation disordering in orthopyroxenes. Am. Mineral., 66, 965–973.Google Scholar
  7. Birch, F. (1966): Compressibility: elastic constants, in Clark, S.P.Jr (ed), Handbook of physical constants, Geol. Soc. Am., New York, pp 97–173.Google Scholar
  8. Bottinga, Y., Weil, D.F. und Richet, P. (1981): Thermodynamic modeling of silicate melts, in Newton, R.C., Navrotsky, A. und Wood, B.J. (eds.), Advances in physical geochemistry, vol 1, Thermodynamics of minerals and melts, Springer Verlag, New York, pp 207–245.Google Scholar
  9. Boyd, F.R. und England, J.L. (1963): Effects of pressure on the melting points of diopside, CaMgSi2O6, and albite, NaAISi3O8, in the range up to 50 kilobars. J. Geophys. Res., 68, 311–323.CrossRefGoogle Scholar
  10. Boyd, F.R., England, J.L. und Davis, B.T.C. (1964): Effects of pressure on melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res., 69, 2101–2109.CrossRefGoogle Scholar
  11. Buddington, A.F. und Lindsley, D.H. (1964): Iron–titanium oxide minerals and synthetic equivalents. J. Petrol., 5, 310 –. 357.Google Scholar
  12. Burnham, C.W., Holloway, J.R. und Davis, N.F. (1969): Thermodynamic properties of water to 1000°C and 10,000 bars. Geol. Soc. Am. Spec. Paper, 132, 1–96.Google Scholar
  13. Cahn, J.W. (1962): Coherent fluctuations and nucleation in isotropic solids. Acta Met., 10, 907–913.CrossRefGoogle Scholar
  14. Carlson, H.C. und Colburn, A.P. (1947): Vapor–liquid equilibria of nonideal solutions. Utilization of theoretical methods to extended data. Ind. Eng. Chem., 34, 581–589.CrossRefGoogle Scholar
  15. Carmichael, D.M. (1977): Chemical equilibria involving pure crystalline compounds, in Greenwood, H.J. (ed), Short course in application of thermodynamics to petrology and ore deposits. Mineral Assoc. Canada, Evergreen Press, pp 47–65.Google Scholar
  16. Cemic, L. (1983): Chemische Aktivitäten in mineralogischen Systemen: Theorie und ihre Anwendung auf das System ZnS–FeS. Fortschr. Miner., 61, 169–191.Google Scholar
  17. Charlu, T.V., Newton, R.C. und Kleppa, O.J. (1975): Enthalpies of formation at 970K of compounds in the system MgO–AI2O3–Si02 from high temperature solution calorimetry. Geochim. Cosmochim. Acta, 39, 1487–1497.CrossRefGoogle Scholar
  18. Charlu, T.V., Newton, R.C. und Kleppa, O.J. (1978): Enthalpy of formation of some lime silicates by high temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim. Cosmochim. Acta. 42, 367–375.CrossRefGoogle Scholar
  19. Chatterjee, N.D. (1972): The upper stability of paragonite. Contrib. Mineral. Petrol., 34, 288–303.CrossRefGoogle Scholar
  20. Chatterjee, N.D. (1973): Low–temperature compatibility relations of the assemblage quartz–paragonite and the thermodynamic status of the phase rectorite. Contrib. Mineral. Petrol., 42, 259–271.CrossRefGoogle Scholar
  21. Chatterjee, N.D. and Froese, E. (1975): A thermodynamic study of pseudobinary join muscovite–paragonite in the system KAISI3O8–NaAISI3O8 Al2O3–a Si02–H2O. Am. Mineral., 60, 985–993.Google Scholar
  22. Cressey, G., Schmid, R. und Wood, B.J. (1978): Thermodynamic properties of almandine–grossular garnet solid solutions. Contrib. Mineral. Petrol., 67, 397–404.CrossRefGoogle Scholar
  23. Davis, B.T.C. und Boyd, F.R. (1966): The join Mg2SI2O6–CaMgSI2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites. J. Geophys. Res. 71, 3567–3576.Google Scholar
  24. Day, H.W. und Kumin, H.J. (1980): Thermodynamic analysis of the aluminium silicate triple point. Am. J. Sci., 280, 265–287.CrossRefGoogle Scholar
  25. Decker, D.L. (1966): Equation of state of sodium chloride. J. Appl. Phys., 37, 5012–5015.CrossRefGoogle Scholar
  26. Decker, D.L. (1971): High–Pressure equation of state for NaCI, KCI and CsCl. J. Appl. Phys., 42, 3239–3244.CrossRefGoogle Scholar
  27. Deer, W.A., Howie, R.A. und Zusman, J. (1963): Rock–forming minerals. Wiley, New York.Google Scholar
  28. Froese, E. und Gunter, A.E. (1976): A note on the pyrrhotite sulfur vapor equilibrium. Econ. Geol., 71, 1589–1594.CrossRefGoogle Scholar
  29. Ganguly, J. (1973): Activity–composition relation of jadeite in omphacite pyroxene: theoretical deductions. Eartli Planet. Sci. Letters, 19, 145–153.Google Scholar
  30. Ganguly, J. (1976): The energetics of natural garnet solid solutions. II mixing of the calcium silicate end–members. Contrib. Mineral. Petrol., 55, 81–90.CrossRefGoogle Scholar
  31. Gasparik, T. (1984): Two–pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Mineral. Petrol., 87, 87–97.CrossRefGoogle Scholar
  32. Gent, E.D. (1976): Plagioclase–garnet–Al2SiO5–quartz: a potential geobarometer–geothermometer. Am. Mineral., 61, 710–714.Google Scholar
  33. Gordon, T.M. (1973): Determination of internally consistent thermodynamic data from phase equilibrium experiments. J. Geol., 81, 199–208.CrossRefGoogle Scholar
  34. Guggenheim, E.A. (1937): A theoretical basis of Raoult’s law. Trans. Faraday Soc., 33, 151–159.CrossRefGoogle Scholar
  35. Halbach, H. und Chatterjee, N.D. (1978): Über die Anwendung von Optimierungsmethoden zur Bestimmung thermodynamischer Daten von Mineralen. Fortschr. Miner., 56, (1) 34–35.Google Scholar
  36. Halbach, H. und Chatterjee, N.D. (1982a): An empirical Redlich–Kwong–type equation of state for water to 1,000°C and 200 kbar. Contrib. Mineral. Petrol., 79, 337–345.CrossRefGoogle Scholar
  37. Halbach, H. und Chatterjee. N.D. (1982b): The use of linear parametric programing for determining internally consistent thermodynamic data for minerals, in Schreyer, W. (ed), High Pressure Researches in Geoscience, Schweizerbartsche Verlagsbuchhandlung, Stuttgart.Google Scholar
  38. Haselton, H.T. und Newton, R.C. (1980): Thermodynamics of pyrope–grossular garnets and their stabilities at high temperatures and high pressures. J. Geophys. Res., 85, 6973–6982.CrossRefGoogle Scholar
  39. Hazen, R.M. (1976a): Effects of temperature and pressure on the cell dimensions and x–ray temperature factors of periclase. Am. Mineral., 61, 266–271.Google Scholar
  40. Hazen, R.M. (1976b): Effects of temperature and pressure on the crystal structure of forsterite. Am. Mineral., 61, 1280–1293.Google Scholar
  41. Hazen, R.M. and Finger, L.W. (1978): Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am. Mineral., 63, 297–303.Google Scholar
  42. Helgeson, H.C. and Kirkham, D.H. (1974): Theoretical prediction of the thermodynamic behaviour of aqueous electrolyts at high pressures and temperatures: I Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci., 274, 1089–1198.CrossRefGoogle Scholar
  43. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978): Summary and critique of the thermodynamic properties of rock–forming minerals. Am. J. Sci., 278A, 1–229.CrossRefGoogle Scholar
  44. Hemingway, B.S., Krupka, K.M. and Robie, R.A. (1981): Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite, Am. Mineral., 66, 1202–1215.Google Scholar
  45. Hensen, B.J., Schmid, R. and Wood, B.J. (1975): Activity relationship for pyrope–grossular garnet. Contrib. Mineral. Petrol., 51, 161–166.CrossRefGoogle Scholar
  46. Holdaway, M.J. (1971): Stability of andalusite and aluminium silicate phase diagram. Am. J. Sci., 271, 97–131.CrossRefGoogle Scholar
  47. Holland, T.B.J. (1980): The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am. Mineral., 65, 129–134.Google Scholar
  48. Holland, T.B.J. (1981): Thermodynamic analysis of simple mineral systems, in Newton, R.C., Navrotsky, A. and Wood, B.J. (eds), Advances in physical geochemistry, vol. 1, Thermodynamics of minerals and melts. Springer Verlag, New York, pp 207–245.Google Scholar
  49. Holland, T.B.J., Navrotsky, A. and Newton, R.C. (1979): Thermodynamic parameters of CaMgSI2O6–Mg2SI2O6 pyroxenes based on regular solution and cooperative disordering models. Contrib. Mineral. Petrol., 69, 337–344.CrossRefGoogle Scholar
  50. Holloway, J.R. (1977): Fugacity and activity of molecular species in supercritical fluids. in Fraser, D.G. (ed), Thermodynamics in geology, D. Riedel Publishing Company, Dodrecht, pp 161–181.Google Scholar
  51. Huckenholz, H.G. and Knittel, D. (1975): Uvarovite: Stability of uvarovite–grossularite solid solutions at low pressure. Contrib. Mineral. Petrol., 49, 211–232.CrossRefGoogle Scholar
  52. Huckenholz, H.G., Hölzél, E. and Lindhuber, W. (1975): Grossularite, its solidus and liquidus relations in the CaO–Al2O3 –SiO2–H2O system up to 10 kbar. N. Jb. Mineral. Abh., 124, 1–46.Google Scholar
  53. Johannes, W. and Puhan, D. (1971): The calcite–aragonite transition, reinvestigated. Contrib. Mineral. Petrol., 31, 28–38.CrossRefGoogle Scholar
  54. Kerrick, D.M. and Darken, L.S. (1975): Statistical thermodynamic model for ideal oxide and silicate solutions, with application to plagioclase. Geochim. Cosmochim. Acta, 39, 1431–1442.CrossRefGoogle Scholar
  55. Krupka, K.M., Kerrick, D.M. and Robie, R.A. (1979a): Heat capacities of synthetic orthoenstatite and natural anthophyllite from 5 to 1000 K. EOS, 60, 405.Google Scholar
  56. Krupka, K.M., Robie, R.A. and Hemingway, B.S. (1979b): High temperature heat capacities of corundum, periclase, anorthite, CaAI2S12O8 glass, muscovite, pyrophyllite, KAISI3O8 glass, grossular, and NaAISI3O8 glass. Am. Mineral., 64, 86–101.Google Scholar
  57. Kubaschewski, O., Evans, B.W. and Alcock, C.B. (1967): Metallurgical thermochemistry. Pergamon Press, Oxford.Google Scholar
  58. Kujawa, F.B. and Eugster, H.P. (1966): Stability sequences and stability levels in unary systems. Am. J. Sci., 264, 620–642.CrossRefGoogle Scholar
  59. Lindsley, D.H. (1983): Equilibrium relations of coexisting pairs of Ti–Fe oxides. Yb. Carnegie Instn. Wash., 62, 60–66.Google Scholar
  60. Lindsley, D.H. und Dixon, S.A. (1976): Diopside–enstatite equilibria at 850 to 1400°C, 5 to 35 kbars. Am. J. Sci., 276, 1285–1301.CrossRefGoogle Scholar
  61. Lindsley, D.H., Grover, J.E. und Davidson, P.M. (1981): The thermodynamics of the M92SI2O6 – CaMgSI2O6 join: a review and an improved model, in Newton, R.C., Navrotsky, A. und Wood, B.J. (eds), Advances in physical geochemistry, vol. 1, Thermodynamics of minerals and melts, Springer Verlag, New York, pp 149–175.Google Scholar
  62. Mammone, J.F., Sharma, S.K. and Nicholl, M.F. (1981): Ring structures in silica glass – A Raman spectroscopic investigation. EOS, 62, 425.Google Scholar
  63. Mel’nik, Y.P. (1972): Thermodynamic parameters of compressed gases and metamorphic reactions involving water and carbon dioxide. Geochem. Int., 9, 419–426.Google Scholar
  64. Mori, T. and Green, D.H. (1975): Pyroxenes in the system Mg2SI2O6–CaMgSI2O6 at high pressure. Earth Planet. Sci. Letters, 26, 277–286.Google Scholar
  65. Mori, T. and Green, D.H. (1976): Subsolidus equilibria between pyroxenes in the CaO–MgO–SiO2 system at high pressures and temperatures. Am. Mineral., 61, 616–625.Google Scholar
  66. Myers, J. und Eugster, H.P. (1983): The system Fe–Si–O: oxygen buffer calibrations to 1,500 K. Contrib. Mineral. Petrol., 82, 75–90.CrossRefGoogle Scholar
  67. Nafziger, R.H. und Muan, A. (1967): Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO–“FeO”–SiO2. Am. Mineral., 52, 1364–1385.Google Scholar
  68. Navrotsky, A., Newton, R.C. and Kleppa, O.J. (1973): Sillimanite disordering enthalpy by calorimetry. Geochim. Cosmochim. Acta, 37, 2497–2508.CrossRefGoogle Scholar
  69. Nehru, C.E. and Wyllie. P.J. (1974): Electron microprobe measurements of pyroxenes coexisting with H2O–undersaturated liquid on the join CaMgSI2O6–Mg2SI2O6–H2O at 30 kilobars with application to geothermometry. Contrib. Mineral. Petrol., 48, 221–228.CrossRefGoogle Scholar
  70. Newton, R.C. und Wood, B.J. (1980): Volume behaviour of silicate solid solutions. Am. Mineral., 65, 733–745Google Scholar
  71. Newton, R.C. und Perkins III, D. (1982): Thermodynamic calibration of geobarometers based on the assemblage garnet–plagioclase–orthopyroxene (clinopyroxene)quartz. Am. Mineral., 67, 203–222.Google Scholar
  72. Newton, R.C., Charlu, T.V., Anderson, P.A.M. und Kleppa, O.J. (1979): Thermochemistry of synthetic clinopyroxenes on the join CaMgSI2O6–Mg2SI2O6. Geochim. Cosmochim. Acta, 43, 55–60.CrossRefGoogle Scholar
  73. Newton, R.C., Charlu, T.V. und Kleppa, O.J. (1980): Thermochemistry of high structur– al state of plagioclase. Geochim. Cosmochim. Acta, 44, 55–60.CrossRefGoogle Scholar
  74. Newton, R.C., Wood, B.J. und Kleppa, O.J. (1981): Thermochemistry of silicate solid solutions. Bull. Mineral., 104, 162–171.Google Scholar
  75. Nicholls, J. (1978): The calculation of the displacement of mineral equilibria by solution of H2O in silicate melts, in Greenwood, H.J. (ed), Short course in application of thermodynamics to petrology and ore deposits, Mineral. Assoc. Canada, Evergreen Press, pp 160–184.Google Scholar
  76. O’Neill, H.C. und Navrotsky, A. (1983): Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Mineral., 68, 181–194.Google Scholar
  77. O’Neill, H.C. und Navrotsky, A. (1984): Cation distribution and thermodynamic properties of binary spinel solid solutions. Am. Mineral., 69, 733–753.Google Scholar
  78. Openshaw, R.E., Hemingway, B.S., Robie, R.A., Waldbaum, D.R. und Krupka, K.M. (1976): The heat capacities at low temperatures and entropies at 298,15 K of low albite, analbite, microcline, and high sanidine. U.S. Geol. Surv. J. Res., 4, 195–204.Google Scholar
  79. Orville, P.M. (1967): Unit–cell parameters of the microcline–low albite and sanidinehigh albite solid solution series. Am. Mineral., 52, 55–86.Google Scholar
  80. Orville, P.M. (1972): Plagioclase cation exchange equilibria with aqueous chloride solutions at 700°C and 2,000 bars in the presence of quartz. Am. J. Sci., 222, 234–272.CrossRefGoogle Scholar
  81. Powell, R. (1978): The thermodynamics of pyroxene geotherms. Phil. Trans. Roy. Soc. London, Ser. A 288, 457–469.CrossRefGoogle Scholar
  82. Ramdohr, P. und Strunz, H. (1978): Klockmanns Lehrbuch der Mineralogie. Ferdinand Enke Verlag, Stuttgart.Google Scholar
  83. Redlich, R.C. und Kwong, J.N.S. (1949): On thermodynamics of solutions V: An equation of state. Fugacities of gaseous solutions. Chem. Rev., 44, 233–244.CrossRefGoogle Scholar
  84. Richardson, F.D. (1956): Activities in ternary silicate melts. Trans. Farad. Soc., 52, 1312–1324.CrossRefGoogle Scholar
  85. Richardson, F.D., Gilbert, M.C. und Bell, P.M. (1969): Experimental determination of kyanite–andalusite–sillimanite equilibria, the aluminium silicate triple point. Am. J. Sci., 267, 259–272.CrossRefGoogle Scholar
  86. Robie, R.A., Hemingway, B.S. und Fisher, J.R. (1979): Thermodynamic properties of 5 minerals and related substances at 298.15 K und 1 bar ( 10 Pascals) pressure and at higher temperatures. Geol. Surv. Bull., 1452, Washington.Google Scholar
  87. Robie, R.A., Hemingway, B.S. und Takai, H. (1982): Heat capacities and entropies of Mg2SiO4, Mn2SiO4 and CO2SiO4 between 5 and 380 K. Am. Mineral., 470–482.Google Scholar
  88. Robin, P.-Y.F. (1974): Stress and strain in cryptoperthite lamellae and the coherent solvus of alkali feldspars. Am. Mineral., 59, 1299–1318.Google Scholar
  89. Saxena, S.K. (1981): Fictive component model of pyroxenes and multicomponent phase equilibria. Contrib. Mineral. Petrol., 78, 345–351.CrossRefGoogle Scholar
  90. Saxena, S.K. und Ghose, S. (1971): Mgt+–Fe2+ order–disorder and thermodynamics of orthopyroxene–crystalline solution. Am. Mineral., 56, 532–559.Google Scholar
  91. Saxena, S.K. und Nehru, C.E. (1975): Enstatite–diopside solvus and geothermometry. Contrib. Mineral. Petrol., 49, 259–267.CrossRefGoogle Scholar
  92. Saxena, S.K. und Ribbe, P.H.: (1972): Activity–composition reactions in feldspars. Contrib. Mineral. Petrol., 37, 131–138.CrossRefGoogle Scholar
  93. Seck, H.A. (1971): Koexistierende Alkalifeldspäte und Plagioklase im System NaAISI3O8–KAISI3O8–CaAI2SI2O8–H2O bei Temperaturen von 650°C bis 900°C. N. Jb. Miner. Abh., 115, 315–345.Google Scholar
  94. Seifert, F. (1978): Bedeutung und Nachweis von thermodynamischem Gleichgewicht und Interpretation von Ungleichgewichten. Fortschr. Miner., 55, 111–134.Google Scholar
  95. Seifert, F., Mysen, B.O. und Virgo, D. (1982): Three–dimensional network structure of quenched melts (glass) in the system SiO2–NaAIO2, SiO2–CaAl2O4 and SiO2–MgAl2O4. Am. Mineral., 67, 696–717.Google Scholar
  96. Skinner, B.J. (1956): Physical properties of end–members of the garnet group. Am. Mineral., 41, 428–436.Google Scholar
  97. Skinner, B.J. (1966): Thermal expansion, in Clark, S.P.Jr.(ed), Handbook of physical constant. Geol. Soc. Am., New York, pp 75–95.Google Scholar
  98. Smart, R.M. und Glasser, F.P. (1978): Silicate constitution of lead silicate glasses and crystals. Phys. Chem. Glass., 19, 95–102.Google Scholar
  99. Spencer, K.J. and Lindsley, D.H. (1981): A solution model for coexisting iron–titanium oxides. Am. Mineral., 66, 1186–1201.Google Scholar
  100. Sumino, Y., Anderson, O.L. und Suzuki, I. (1983): Temperature coefficients of elastic constants of single crystal MgO between 80 and 1300 K. Phys. Chem. Minerals, 9, 38–47.CrossRefGoogle Scholar
  101. Thompson, J.B. (1957): Thermodynamic prpoperties of simple solutions, in Abelson, P.H. (ed), Researches in geochemistry, vol. 2, John Wiley and Sons, New York, pp 340–361.Google Scholar
  102. Thompson, J.B.Jr und Waldbaum, D.R. (1969): Mixing properties of sanidine crystalline solutions: IV Phase diagrams from equation of state. Am. Mineral., 54, 1274–1298.Google Scholar
  103. Toop, G.W. und Samis, C.S. (1962): Activities of ions in silicate melts. Trans. Met. Soc. AIME, 224, 878–887.Google Scholar
  104. Virgo, D. und Hafner, S.S. (1969): Fee+, Mg2+ order–disorder in heated orthopyroxenes. MSA, Special Pap., 2, 67–81.Google Scholar
  105. Waldbaum, D.R. und Thompson, J.B. (1968): Mixing properties of sanidine crystalline solutions: II calculations based on volume data. Am. Mineral., 53, 2000–2017.Google Scholar
  106. Warner, R.D. und Luth, W.C. (1974): The diopside–enstatite two–phase region in the system CaMgSI2O6–Mg2SI2O6. Am. Mineral., 59, 98–109.Google Scholar
  107. Weil, D.S. (1966): Stability relations in the Al2O3–SiO2 system calculated from solubilities in the Al2O3–NaAIF6 system. Geochim. Cosmochim. Acta, 30, 223–237.CrossRefGoogle Scholar
  108. Wells, P.R.A. (1977): Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol., 62, 129–139.CrossRefGoogle Scholar
  109. Williams, R.J. (1971): Reaction constants in the system Fe–MgO–SiO2–02 at 1 atm between 900° and 1300°C. Am. J. Sci., 270, 334–360.CrossRefGoogle Scholar
  110. Wood, B.J. und Banno, S. (1973): Garnet–orthopyroxene, orthopyroxene–clinopyroxene relationship in simple and complex systems. Contrib. Miner. Petrol., 42, 109–124.CrossRefGoogle Scholar
  111. Wood, B.J., Holland, T.B.J., Newton, R.C. und Kleppa, O.J. (1980): Thermochemistry of jadeite–diopside pyroxenes. Geochim. Cosmochim. Acta, 44, 1363–1371.CrossRefGoogle Scholar
  112. Yund, R.A. (1975): Microstructure, kinetics and mechanisms of alkali feldspar exsolution, in Ribbe, P.H. (ed), MSA, Short course notes, Feldspar mineralogy. pp Y 29 – Y 57.Google Scholar
  113. Zen, E-An (1966): Construction of pressure–temperature diagrams for multicomponent systems after the method of Schreinemakers–a geometric approach. U.S. Geol. Surv. Bull., 1225, 1–56.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  1. 1.Institut für Mineralogie und KristallographieTU BerlinBerlin 12Deutschland

Personalised recommendations