Skip to main content

Regulation of NaCl Transport in Tight Epithelia

  • Chapter
NaCl Transport in Epithelia

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 1))

  • 81 Accesses

Abstract

Regulation by vertebrates of the amount of salt in the body is accomplished by the controlled transport of Na and Cl ions by various epithelial tissues. The amount of NaCl retained in the body determines, in turn, the volume of extra-and intracellular water, which must be maintained within narrow limits. This review will focus on the mechanisms controlling a specific transport process, the reabsorption of NaCl, by a class of high resistance epithelia represented by the mammalian cortical collecting tubule, the amphibian skin, the colon in mammals, amphibians, reptiles, and birds, and the urinary bladders of mammals, amphibians, and reptiles. These mechanisms involve modulations in the activities of ion channels, ion pumps, and metabolic processes. The major thesis of this chapter will be that different types of control mechanisms govern these processes on different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Awqati Q (1978) H+ transport in urinary epithelia. Am J Physiol 235:F77–F88

    PubMed  CAS  Google Scholar 

  • Albert WC, Handler JS (1974) Effects of PGE1, indomethacin and polyphloretin phosphate in the toad bladder response to ADH. Am J Physiol 226:1382–1386

    PubMed  CAS  Google Scholar 

  • Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    PubMed  CAS  Google Scholar 

  • Berridge M J and Irving RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312:315–321

    CAS  Google Scholar 

  • Chaillet JR, Lopes A, Boron WF (1985) Basolateral Na- H exchange in the rabbit cortical collecting tubule. J Gen Physiol 86:795–812

    PubMed  CAS  Google Scholar 

  • Chase HS Jr, Al-Awqati Q (1981) Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. J Gen Physiol 77:693–712

    PubMed  Google Scholar 

  • Chase HS Jr, Al-Awqati Q (1983) Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. J Gen Physiol 81:643 – 665

    PubMed  CAS  Google Scholar 

  • Civan MM, Dibona DR (1978) Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway. J Membr Biol 38:359–386

    PubMed  CAS  Google Scholar 

  • Civan MM, Rubenstein D, Mauro T, O’Brien TG (1985) Effects of tumor promoters on sodium ion transport across frog skin. Am J Physiol 248:C457–C465

    PubMed  CAS  Google Scholar 

  • Cobb MH, Skipski IA, Scott WN (1981) Role of induced proteins in insulin-stimulated sodium transport. Ann N Y Acad Sci 372:247 – 269

    PubMed  CAS  Google Scholar 

  • Cox M, Geheb M (1984) Aldosterone-induced proteins in renal epithelia. Curr Top Membr Transp 20:271–293

    CAS  Google Scholar 

  • Cox M, Singer I (1977) Insulin-mediated Na+ transport in the toad urinary bladder. Am J Physiol 232:F270–F277

    PubMed  CAS  Google Scholar 

  • Creese R (1968) Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J Physiol (London) 197:255–278

    CAS  Google Scholar 

  • Curran PF, Herrera FC, Flanigan WJ (1963) The effect of Ca and antidiuretic hormone on Na-transport across the frog skin. II. Sites and mechanisms of action. J Gen Physiol 46: 1011–1027

    PubMed  CAS  Google Scholar 

  • Cuthber AW, Wilson SA (1981) Mechanisms for the effects of acetylcholine on sodium transport in frog skin. J Membr Biol 59:65–75

    Google Scholar 

  • Doucet A, Katz AI (1981) Short-term effect of aldosterone on Na, K-ATPase in single nephron segments. Am J Physiol 241:F273 – F278

    PubMed  CAS  Google Scholar 

  • Driessche W van, Lindemann B (1979) Concentration-dependence of currents through single sodium-selective pores in frog skin. Nature (London) 282:519–520

    Google Scholar 

  • Eaton DC, Hamilton KL, Johnson KE (1984) Intracellular acidosis blocks the Na+ pump in rabbit urinary bladder. Am J Physiol 16:F946–F955

    Google Scholar 

  • Edelman IS (1978) Candidate mediators in the action of aldosterone on Na+ transport. In: Hoffman JF (ed) Membrane transport processes, vol 1. Raven, New York, pp 125–140

    Google Scholar 

  • El Mernissa G, Doucet A (1983) Short-term effect of aldosterone on renal sodium transport and Na-K-ATPase in the rat. Pfluegers Arch 399:139–146

    Google Scholar 

  • El Mernissa G, Chabardes D, Doucet A, Hus-Citharel A, Imbert-Teboul M, Le Bouffant F, Montegut M, Siaume S, Morel F (1983) Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am J Physiol 245:F100–F109

    Google Scholar 

  • Els WJ, Helman SI (1981) Vasopressin, theophylline, PGE2 and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol 241:F279 – F288

    PubMed  CAS  Google Scholar 

  • Erlij D, Gersten L, Sterba G, Schoen HF (1986) Role of prostaglandin release in the response of tight epithelia to Ca2+ ionophores. Am J Physiol 250:C629–C636

    PubMed  CAS  Google Scholar 

  • Fanestil DD, Kessler R, Park CS (1984) Probing molecular characteristics of ion transport proteins. Curr Top Membr Transp 20:259–270

    CAS  Google Scholar 

  • Finn AL, Rogenes P (1980) The effects of voltage clamping in tight epithelia. Curr Top Membr Transp 13:245–255

    CAS  Google Scholar 

  • Frazier HS, Dempsey EF, Leaf A (1962) Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol 45:529–543

    PubMed  CAS  Google Scholar 

  • Frindt G, Burg MB (1972) Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int 1:224–231

    PubMed  CAS  Google Scholar 

  • Frindt G, Windhager EE (1986) Effect of ionomycin on Na fluxes in perfused cortical collecting tubules (CCT’s) of rabbit kidneys. Fed Proc 45:540.

    Google Scholar 

  • Fuchs W, Hviid Larsen E, Lindemann B (1977) Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (London) 267:137–166

    CAS  Google Scholar 

  • Garg L, Knepper M, Burg M (1981) Mineralocorticoid stimulation of Na-K-ATPase in nephron segments. Am J Physiol 240:F536–F544

    PubMed  CAS  Google Scholar 

  • Garty H (1984) Amiloride blockable sodium fluxes in toad bladder membrane vesicles. J Membr Biol 82:269–280

    PubMed  CAS  Google Scholar 

  • Garty H (1986) Mechanism of aldosterone action in tight epithelia. J Membr Biol 90:193–205

    PubMed  CAS  Google Scholar 

  • Garty H, Asher C (1985) Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles. J Biol Chem 260:8330–8335

    PubMed  CAS  Google Scholar 

  • Garty H, Edelman IS (1983) Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol 81:785 – 803

    PubMed  CAS  Google Scholar 

  • Garty H, Lindemann B (1984) Feedback inhibition of sodium uptake in K-depolarized toad urinary bladders. Biochim Biophys Acta 771:89–98

    PubMed  CAS  Google Scholar 

  • Garty H, Edelman IS, Lindemann B (1983) Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone. J Membr Biol 74:15–24

    PubMed  CAS  Google Scholar 

  • Garty H, Civan ED, Civan MM (1985) Effects of internal and external pH on amiloride-blockable Na+ transport across toad urinary bladder vesicles. J Membr Biol 87:67–75

    PubMed  CAS  Google Scholar 

  • Geering K, Girardet M, Bron C, Kraehenbuhl JP, Rossier BC (1982) Hormonal regulation of (Na+,K+)-ATPase biosynthesis in the toad bladder. Effects of aldosterone and 3,5,3′-triiodo-L-thyronine. J Biol Chem 257:10338–10343

    PubMed  CAS  Google Scholar 

  • Geering K, Gaeggler HP, Rossier BC (1984) Effects of thyrometric drugs on aldosterone-dependent sodium transport in the toad bladder. J Membr Biol 77:15–23

    PubMed  CAS  Google Scholar 

  • Grinstein S, Erlij D (1978) Intracellular Ca+ + and the regulation of Na+ transport in the frog skin. Proc R Soc Lond Ser B 202:353 – 360

    CAS  Google Scholar 

  • Hamilton KL, Eaton DC (1985) Single channel recordings from the amiloride-sensitive Na+ channel. Am J Physiol 249:C200–C207

    PubMed  CAS  Google Scholar 

  • Helman SI, Cox TC, VanDriessche W (1983) Hormonal control of apical membrane Na transport in epithelia: studies with fluctuation analysis. J Gen Physiol 82:201 – 220

    PubMed  CAS  Google Scholar 

  • Herrera FC (1965) Effect of insulin on short-circuit current and sodium transport across toad urinary bladder. Am J Physiol 209:819–824

    PubMed  CAS  Google Scholar 

  • Herrera FC, Whittembury G, Planchant A (1963) Effect of insulin on short circuit current across isolated frog skin in the presence of calcium and magnesium. Biochim Biophys Acta 66:170–172

    PubMed  CAS  Google Scholar 

  • Hong CD, Essig A (1976) Effects of 2-deoxy-D-glucose, amiloride, vasopressin and ouabain on active conductance and ENa in the toad bladder. J Membr Biol 28:121–142

    PubMed  CAS  Google Scholar 

  • Horster M, Schmid H, Schmidt U (1980) Aldosterone in vitro restores nephron Na-K-ATPase of distal segments from adrenalectomized rabbits. Pfluegers Arch 384:203 – 206

    CAS  Google Scholar 

  • Hviid Larsen E, Kristensen P (1978) Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo). Acta Physiol Scand 102:121

    Google Scholar 

  • Iino Y, Imai M (1978) Effects of prostaglandins on Na transport in isolated collecting tubules. Pfluegers Arch 373:125 – 132

    CAS  Google Scholar 

  • Jorgensen PL (1986) Structure, function and regulation of Na, K-ATPase in the kidney. Kidney Int 29:10–20

    PubMed  CAS  Google Scholar 

  • Kim D, Marsh JD, Barr WH, Smith TW (1984) Effects of growth in low potassium medium or ouabain on membrane Na, K-ATPase, cation transport and contractility in cultured chick heart cells. Circ Res 55:39–48

    PubMed  CAS  Google Scholar 

  • Kirsten E, Kirsten R, Leaf A, Sharp GWG (1968) Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder. Pfluegers Arch 300:213–225

    CAS  Google Scholar 

  • Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81:3591–3594

    PubMed  CAS  Google Scholar 

  • Law P-Y, Edelman IS (1978) Induction of citrate synthase by aldosterone in the rat kidney. J Membr Biol 41:41–64

    PubMed  CAS  Google Scholar 

  • Leaf A, Anderson P (1958) Active sodium transport in the isolated toad bladder. J Gen Physiol 41:657–668

    PubMed  CAS  Google Scholar 

  • Leaf A, Keller A, Dempsey EF (1964) Stimulation of sodium transport in toad bladder by acidification of the mucosal medium. Am J Physiol 207:547 – 552

    PubMed  CAS  Google Scholar 

  • Lewis SA, Alles WP (1986) Urinary kallikrein: a physiological regulator of epithelial Na+ absorption. Proc Natl Acad Sci USA 83:5345 – 5348

    PubMed  CAS  Google Scholar 

  • Lewis SA, Moura JLC de (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder. Nature (London) 297:685–688

    CAS  Google Scholar 

  • Lewis SA, Moura JLC de (1984) Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J Membr Biol 82:123 – 136

    PubMed  CAS  Google Scholar 

  • Lewis SA, Butt AG, Bowler JM, Leader JP, Macknight ADC (1985) Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J Membr Biol 83:119–137

    PubMed  CAS  Google Scholar 

  • Li JH-Y, Lindemann B (1980) pH-dependence of apical Na-transport in frog skin. Adv Physiol Sci 3:151–155

    Google Scholar 

  • Li JH-Y, Palmer LG, Edelman IS, Lindemann B (1982) The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J Membr Biol 64:77–89

    PubMed  CAS  Google Scholar 

  • Lindemann B (1984) Fluctuation analysis of sodium channels in epithelia. Ann Rev Physiol 46:497–515

    CAS  Google Scholar 

  • Lipson LC, Sharp GWG (1971) Effect of prostaglandin E1 on sodium transport and osmotic water flow in the toad bladder. Am J Physiol 220:1046–1052

    PubMed  CAS  Google Scholar 

  • Lipton P (1972) Effect of changes in osmolarity on sodium transport across toad bladder. Am J Physiol 222:821–828

    PubMed  CAS  Google Scholar 

  • Ludens JH (1978) Studies on the inhibition of Na+ transport in toad bladder by the ionophore A23187. J Pharmacol Exp Ther 206:414–422

    PubMed  CAS  Google Scholar 

  • Mangos JA, McSherry NR (1967) Sodium transport: inhibitory factor in sweet of patients with cystic fibrosis. Science 158:135–136

    PubMed  CAS  Google Scholar 

  • Margolius HS (1984) The kallikrein-kinin system and the kidney. Ann Rev Physiol 46:309–326

    CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  • Moore RD (1973) Effect of insulin upon the sodium pump in frog skeletal muscle. J Physiol(London) 232:23–45

    CAS  Google Scholar 

  • Olans L, Sariban-Sohraby S, Benos DJ (1984) Saturation behavior of single, amiloride-sensitive Na+ channels in planar lipid bilayers. Biophys J 46:831 – 835

    PubMed  CAS  Google Scholar 

  • O’Neil RG, Hayhurst RA (1985) Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol 85:169–179

    PubMed  Google Scholar 

  • O’Neil RG, Helman SI (1977) Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol 233:F544–F588

    PubMed  Google Scholar 

  • Orloff J, Handler JS (1962) The similarity of effects of vasopressin, adenosine 3′–5′ phosphate (cAMP) and theophylline on the toad bladder. J Clin Invest 41:702–709

    PubMed  CAS  Google Scholar 

  • Palmer LG (1984) Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J Membr Biol 80:153 – 165

    PubMed  CAS  Google Scholar 

  • Palmer LG (1985 a) Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. J Membr Biol 87:191 – 199

    PubMed  CAS  Google Scholar 

  • Palmer LG (1985 b) Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca and H. J Membr Biol 83:57–69

    PubMed  CAS  Google Scholar 

  • Palmer LG (1986) Apical membrane K conductance in the toad urinary bladder. J Membr Biol 92:217–226

    PubMed  CAS  Google Scholar 

  • Palmer LG, Frindt G (1986) Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci USA 83:2767–2770

    PubMed  CAS  Google Scholar 

  • Palmer LG, Frindt G (1987) Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol 253:F333–F339

    PubMed  CAS  Google Scholar 

  • Palmer LG, Speez N (1986) Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am J Physiol 250:F273 – F281

    PubMed  CAS  Google Scholar 

  • Palmer LG, Edelman IS, Lindemann B (1980) Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J Membr Biol 57:59–71

    PubMed  CAS  Google Scholar 

  • Palmer LG, Li JH-Y, Lindemann B, Edelman IS (1982) Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol 64:91 – 102

    PubMed  CAS  Google Scholar 

  • Petty KJ, Kokko JP, Marver DC (1981) Secondary effect of aldosterone on Na-K-ATPase activityin the rabbit cortical collecting tubule. J Clin Invest 68:1514–1521

    PubMed  CAS  Google Scholar 

  • Pressley TA, Haber RS, Loeb JN, Edelman IS, Ismail-Beigi F (1986) Stimulation of Na,K-activatedadenosine triphosphatase and active transport by low external K+ in a rat liver cell Une. J Gen Physiol 87:591–606

    PubMed  CAS  Google Scholar 

  • Rayson BM, Gupta RK (1985) Steroids, intracellular sodium levels, and Na+/K+-ATPase regulation. J Biol Chem 260:12740–12743

    PubMed  CAS  Google Scholar 

  • Rayson BM, Lowther SO (1984) Steroid regulation of Na+ K+-ATPase: differential sensitivities along the nephron. Am J Physiol 246:F656 – F662

    PubMed  CAS  Google Scholar 

  • Reif MC, Troutman SL, Schafer JA (1984) Sustained response to vasopressin in isolated rat corticalcollecting tubule. Kidney Int 26:725 – 732

    PubMed  CAS  Google Scholar 

  • Resh MD, Memenoff RA, Guidotti G (1980) Insulin Stimulation of (Na+,K+)-adenosine triphospha-tase-dependent 86Rb+ uptake in rat adipocytes. J Biol Chem 255:10938–10945

    PubMed  CAS  Google Scholar 

  • Rossier BC (1984) Biosynthesis of (Na+, K+) ATPase in amphibian epithelial cells. Curr Top Membr Transp 20:125–145

    CAS  Google Scholar 

  • Sahib MK, Schwarz JH, Handler JS (1978) Inhibition of toad urinary bladder sodium transport by carbamylcholine: possible role of cyclic GMP. Am J Physiol 235:F586–F591

    PubMed  CAS  Google Scholar 

  • Sansom SC, O’Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of cortical collecting duct. Am J Physiol 248:F858–F868

    PubMed  CAS  Google Scholar 

  • Sansom SC, O’Neil RG (1986) Effects of mineralocorticoids on transport properties of corticalcollecting duct basolateral membrane. Am J Physiol 251:F743 – F757

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby S, Burg M, Wiesmann WP, Chiang PK, Johnson JP (1984) Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225:745–746

    PubMed  CAS  Google Scholar 

  • Schoen HF, Erlij D (1985) Basolateral membrane responses to transport modifiers in the frog skin epithelium. Pfluegers Arch 405:S33 – S38

    CAS  Google Scholar 

  • Schuster VL (1985) Mechanism of bradykinin, ADH and cAMP interaction in rabbit corticalcollecting duct. Am J Physiol 249:F645 – F653

    PubMed  CAS  Google Scholar 

  • Schwartz GJ, Burg MB (1978) Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 233:576–585

    Google Scholar 

  • Sharp GWG, Leaf A (1966) Mechanism of action of aldosterone. Physiol Rev 46:593 – 633

    PubMed  CAS  Google Scholar 

  • Siegel B, Civan MM (1976) Aldosterone and insulin effects on driving force of Na+ pump in toad bladder. Am J Physiol 230:1603 – 1608

    PubMed  CAS  Google Scholar 

  • Stokes JB, Kokko JP (1977) Inhibition of sodium transport by prostaglandin E2 across isolated, perfused rabbit collecting tubule. J Clin Invest 59:1099–1104

    PubMed  CAS  Google Scholar 

  • Taylor A, Windhager EE (1979) Possible role of cytosoic calcium and Na — Ca exchange in regulationof transepithelial sodium transport. Am J Physiol 236:F505 –F512

    PubMed  CAS  Google Scholar 

  • Thomas SR, Suzuki Y, Schultz SG (1983) The electrophysiology of Necturus urinary bladder. I. “Instantaneous” current-voltage relations in the presence of varying sodium concentrations. J Membr Biol 73:157–175

    PubMed  CAS  Google Scholar 

  • Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting duct of the rat. J Clin Invest 76:132–136

    PubMed  CAS  Google Scholar 

  • Truscello A, Geering K, Gaeggler HP, Rossier BC (1983) Effects of butyrate and histone deacylation on aldosterone-dependent Na+ transport in the toad bladder. J Biol Chem 258:3388–3395

    PubMed  CAS  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited frog skin. Acta Physiol Scand 23:110–127

    PubMed  CAS  Google Scholar 

  • Vaughn Gl, Cook JS (1972) Regulation of cation transport capacity in HeLa cell membrane after specific blockade by ouabain. Proc Natl Acad Sci USA 69: 2627 – 2631

    Google Scholar 

  • Wade JB, O’Neil RG, Pryor JL, Boupaep EL (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81:439 – 445

    PubMed  CAS  Google Scholar 

  • Walser M (1969) Reversible stimulation of sodium transport in the toad bladder by stretch. J Clin Invest 48:1714–1723

    PubMed  CAS  Google Scholar 

  • Warncke J, Lindemann B (1985) Voltage dependence of Na channel blockage by amiloride: relaxation effects in admittance spectra. J Membr Biol 86:255–265

    PubMed  CAS  Google Scholar 

  • Wiesmann W, Sinha S, Klahr S (1977) Effects of insulin, ADH, and cyclic AMP on sodium transport in the toad bladder. Am J Physiol 232:307 – 314

    Google Scholar 

  • Wiesmann W, Sinha S, Klahr S (1978 a) Effects of ionophore A23187 on base-line and vasopressin- stimulated sodium transport in the toad bladder. J Clin Invest 59:418–425

    Google Scholar 

  • Wiesmann W, Sinha S, Yates J, Klahr S (1978 b) Cholinergic agents inhibit sodium transport across the isolated toad bladder. Am J Physiol 235:F564–F569

    PubMed  CAS  Google Scholar 

  • Wong SME, Chase HS Jr (1986) Role of intracellular calcium in cellular volume regulation. Am J Physiol 250:C841–C852

    PubMed  CAS  Google Scholar 

  • Yanase M, Handler JS (1986) Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol 250:C517 – C522

    PubMed  CAS  Google Scholar 

  • Yingst DR, Hoffman JF (1984) Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K and Ca and the relationship to the functioning Na-K pump. J Gen Physiol 83:19–45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palmer, L.G. (1988). Regulation of NaCl Transport in Tight Epithelia. In: Greger, R. (eds) NaCl Transport in Epithelia. Advances in Comparative and Environmental Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73285-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73285-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73287-4

  • Online ISBN: 978-3-642-73285-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics