Application of the Finite Element Method to the Design of Power Piezoelectric Sonar Transducers

  • B. Hamonic


Apart from the physical problem of the materials behaviour, the design of large bandwidth power piezoelectric transducers sets difficult problems which are associated with the bi-dimensional or tri-dimensional aspect of the structure geometries (ring or flextensional transducers, Helmholtz resonator…) or with the excitation of several vibrational modes. Then, the use of simple models, such as the equivalent circuits, is difficult, else impossible, and only the finite element method is able to provide an accurate modelling. This ṗaṗer describes the use of the finite element code ATILA to solve such problems. In the first part, the basic equations used for in-air modal analyses as well as in-water harmonic analyses are briefly described, including the presentation of an original mixed finite element-plane wave method. Then, the computations of eigenfrequencies and eigenmodes, displacement field, stress field, pressure nearfield and farfield are presented for different transducers (Tonpilz, ring and flextensional projectors) and numerical and experimental results are compared. Finally, several prospects are brought out : modelling of new materials and material losses, coupling with the integral equation method, optimisation.


Displacement Field Finite Element Mesh Directivity Pattern Finite Element Result Hoop Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    D.A. Berlincourt, D.R. Curran and H. Jaffe: in “Physical Acoustics, Principles and Method”, ed. by W.P. Mason. Academic Press, New York, Vol. 1 (1964)Google Scholar
  2. 8.2
    W.P. Mason: “Electromechanical Transducers and Wave Filters”. Van Nostrand, Englewood Cliffs, NJ (1976)Google Scholar
  3. 8.3
    G.E. Martin: J. Acoust. Soc. Am. 35, 510–520 (1963); 36, 1366– 1370 (1964); 36, 1496–1506 (1964)Google Scholar
  4. 8.4
    D.F. McCammon and W. Thompson jr.: J. Acoust. Soc. Am. 68, 754–757, (1980)ADSCrossRefGoogle Scholar
  5. 8.5
    J.L. Butler, J.R. Cipolla and W.D. Brown: J. Acoust. Soc. Am. 70, 500–503 (1981)ADSCrossRefGoogle Scholar
  6. 8.6
    O.C. Zienkiewicz: “The Finite Element Method”. McGraw-Hill, New-York (1977)MATHGoogle Scholar
  7. 8.7
    J.N. Decarpigny, J.C Debus, B. Tocquet and D. Boucher: J. Acoust. Soc. Am. 78, 1499–1507 (1985)ADSCrossRefGoogle Scholar
  8. 8.8
    D.V. Dean: Doctoral Thesis, Naval Postgraduate School, Monterey, CA, (1970)Google Scholar
  9. 8.9
    O.C. Zienkiewicz, R.F. Newton: “Proceedings of the Symposium on Finite Element Techniques”, Stuttgart (1969)Google Scholar
  10. 8.10
    A. Bayliss, M. Gunzburger and E. Turkel: ICASE report N 80/1, NASA Langley (1980)Google Scholar
  11. 8.11
    R. Bossut and J.N. Decarpigny: Communication M4, 106th ASA meeting, San Diego (1983)Google Scholar
  12. 8.12
    R. Bossut: Doctoral Thesis, Valenciennes University, France (1985)Google Scholar
  13. 8.13
    J.N. Decarpigny: Doctoral Thesis, Lille University, France (1984)Google Scholar
  14. 8.14
    J.N. Decarpigny, J.C. Debus, B. Tocquet and D. Boucher: Communication KK1, 102th ASA meeting, Miami (I98I)Google Scholar
  15. 8.15
    J.N. Decarpigny, J.C. Debus, P. Tierce, D. Boucher and B. Tocquet: Communication L9, 112th ASA meeting, Anaheim (1986)Google Scholar
  16. 8.16
    D. Boucher, B. Tocquet, J.C. Debus and P.Tierce: Communication WW7, 106th ASA meeting, San Diego (1983)Google Scholar
  17. 8.17
    P. Tierce: Doctoral Thesis, Valenciennes University, France (1985)Google Scholar
  18. 8.18
    B. Hamonic, J.C. Debus, J.N. Decarpigny. Boucher and B. Tocquet: in “Shell and Spatial Structures: Computational Aspects”, ed. by C.A. Brebbia and S.A. Orszag, Springer-Verlag (1986)Google Scholar
  19. 8.19
    B. Hamonic, J.C. Debus, J.N. Decarpigny, D. Boucher and B. Tocquet: Communication L4, 112th ASA meeting, Anaheim (1986)Google Scholar
  20. 8.20
    B. Hamonic: Doctoral Thesis, Lille University, FRANCE (1987)Google Scholar
  21. 8.21
    R. Valid:“Actes du Deuxième Colloque Tendances Actuelles en Calcul des Structures Sophia Antipolis”. DRET/CELAR, Paris (1982)Google Scholar
  22. 8.22
    L.L. Beranek: “Acoustics”. Me Graw-Hill, New-York (1950)Google Scholar
  23. 8.23
    P.M Morse: “Vibration and Sound”. American Institute of Physics (1976)Google Scholar
  24. 8.24
    J.T. Hunt, M.R. Knittel and D. Barach: J. Acoust. Soc. Am. 55, 269– 280 (1974)Google Scholar
  25. 8.25
    R. Bossut, J.N. Decarpigny, B. Tocquet and D. Boucher: Communication X8, 111th ASA meeting Cleveland (1986)Google Scholar
  26. 8.26
    R.J. Bobber: “Underwater Electroacoustic Measurements”. NRL Technical Report, D.T.I.C. dep. of defense, USA (1970)Google Scholar
  27. 8.27
    B.Stupfel, A. Lavie and J.N. Decarpigny: J. Acoust. Soc. Am. to be publishedGoogle Scholar
  28. 8.28
    B. Dubus, J.C. Debus, J.N. Decarpigny, D. Morel and D. Boucher: Communication MM2, 113th ASA meeting Indianapolis (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • B. Hamonic
    • 1
  1. 1.Laboratoire d’AcoustiqueInstitut Supérieur d’Electronique du NordLille CedexFrance

Personalised recommendations