Solitons pp 308-320 | Cite as

Solitons and Some Other Special Solutions in Field Theory

  • K. Babu Joseph
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)


Solitons in gauge theories such as monopoles and vortices are discussed. The applications of the Hirota bilinear operator and group analysis methods for the SU(2) Higgs model are described.


Gauge Theory Homotopy Class Higgs Model Finite Energy Spatial Infinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. A. M. Dirac, Proc. Roy. Soc. A133 (1931) 60;ADSGoogle Scholar
  2. [1a]
    P. A. M. Dirac, Phys. Rev. 74 (1948) 817.MathSciNetADSMATHCrossRefGoogle Scholar
  3. [2]
    G. ’t Hooft, Nucl. Phys. B79 (1974) 276;ADSCrossRefGoogle Scholar
  4. [2a]
    A. M. Polyakov, JETP Lett. 20 (1974) 194.Google Scholar
  5. [3]
    B. Julia and A. Zee, Phys. Rev. D11 (1975) 2227.ADSGoogle Scholar
  6. [4]
    H. B. Nielsen and P. Olesen, Nucl. Phys. B61 (1973) 45.ADSCrossRefGoogle Scholar
  7. [5]
    Prakash Mathews, C. M. Ajithkumar and K. Babu Joseph, Phys. Lett. 171B (1986) 64.ADSGoogle Scholar
  8. [6]
    A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. 59B (1975) 85.MathSciNetADSGoogle Scholar
  9. [7]
    R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D13 (1976) 2739.MathSciNetADSGoogle Scholar
  10. [8]
    R. Hirota in Solitons ed R.K. Bullough and P. J. Caudrey (Heidelberg: Springer-Verlag, 1980).Google Scholar
  11. [9]
    G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations (New York: Springer-Verlag, 1974).MATHCrossRefGoogle Scholar
  12. [10]
    M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35 (1975) 760.ADSCrossRefGoogle Scholar
  13. [11]
    C. M. Ajithkumar, DUNG Ph.D. Thesis, Cochin University of Science and Technology (1986) (unpublished).Google Scholar
  14. [12]
    I. Ju, Phys. Rev. D17 (1978) 1637.ADSGoogle Scholar
  15. [13]
    A. P. Protogenov, Phys. Lett. 67B (1977) 62.MathSciNetADSGoogle Scholar
  16. [14]
    K. Babu Joseph and B. V. Baby, J. Math. Phys. 26 (1985) 2746.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [15]
    W. Mecklenburg and D. P. O’Brein, Phys. Rev. D18 (1978) 1327.ADSGoogle Scholar
  18. [16]
    H. J. de Vega and F. A. Schaposnik, Phys. Rev. D14 (1976) 1100.ADSGoogle Scholar
  19. [17]
    R. S. Ward, Comm. Math. Phys. 79 (1981) 317.MathSciNetADSCrossRefGoogle Scholar
  20. [18]
    P. Forgacs, Z. Horvath and L. Palla, Phys. Lett. 99B (1981) 232;MathSciNetADSGoogle Scholar
  21. [18a]
    P. Forgacs, Z. Horvath and L. Palla, Phys. Lett. 102B (1981) 131.MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Babu Joseph
    • 1
  1. 1.Department of PhysicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations