Skip to main content

What Can We Learn from Colicins about the Dynamics of Insertion and Transfer of Proteins into and Across Membranes

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 16))

Abstract

New insights into how proteins cross membranes are beginning to emerge. Although there is no universal mechanism, recent results suggest that there are common features of protein translocation. Three steps usually are involved : i) the association of the protein with receptors on the correct membrane, ii) the translocation through the membrane and iii) covalent modification and folding on the opposite membrane surface. A requirement which has now been well established is that the unfolded state of the polypeptide chain to be transferred has to be maintained. By unfolded we mean that this polypeptide has not attained its final most stable conformation although it has obviously acquired some secondary structure. Therefore, an essential feature of translocation may have to do with preventing the folding of the protein into a tertiary structure approximating that of the mature protein. This feature has been demonstrated in mitochondria with dihydrofolate reductase fused with the cytochrome oxydase subunit IV (Eilers and Schatz, 1986), in E. coli with the phosphate binding protein (Pagès et al., 1984) and the maltose binding protein (Randall and Hardy, 1986) and in the rough endoplasmic reticulum with preprolactin by Maher and Singer (1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baty D, Knibiehler M, Verheij H, Pattus F, Shire D, Bernadac A, Lazdunski C (1987a) Site directed mutagenesis of the COOH-terminal region of colicin A: effect on secretion and voltage-dependent channel activity. Proc Natl Acad Sci USA 84: 1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Baty D, Lloubès R, Geli V, Lazdunski C, Howard SP (1987b) (to be published) Extracellular release of colicin A is non-specific. EMBO J

    Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77: 1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Frana J, Hantke K, Schaller K (1980) Penetration of colicin M into cells of E. coli. J Bacteriol 142: 162–168

    PubMed  CAS  Google Scholar 

  • Cavard D, Bemadac A, Pages J-M, Lazdunski C (1984) Colicins are not transiently accumulated in the periplasmic space before release from colicinogenic cells. Biol Cell 51: 79–86

    PubMed  CAS  Google Scholar 

  • Cavard D, Lloubès R, Morion J, Chartier M, Lazdunski C (1985) Lysis protein encoded by plasmid ColA-CA31. Gene sequence and export. Mol Gen Genet 199: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Cavard D, Crozel V, Gorvel J-P, Pattus F, Baty D, Lazdunski C (1986) A molecular, genetic and immunological approach to the functioning of colicin A, a pore-forming protein. J Mol Biol 187: 449–459

    Article  PubMed  CAS  Google Scholar 

  • Cavard D, Baty D, Howard SP, Verheij HM, Lazdunski C (1987) Lipoprotein nature of the colicin A lysis protein. Effect of amino acid substitutions at the modification and processing site. J Bacteriol 169: 2187–2194

    PubMed  CAS  Google Scholar 

  • Cleveland M, Slatin J, Finkelstein A, Levinthal C (1983) Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin E1. Proc Natl Acad Sci USA 80: 3706–3710

    Article  PubMed  CAS  Google Scholar 

  • Dankert JR, Uratani Y, Grabau C, Cramer WA, Hermondson M (1982) On a domain structure of colicine E1. J Biol Chem 257: 3857–3863

    PubMed  CAS  Google Scholar 

  • Davidson VL, Brunden KR, Cramer WA, Cohen FS (1984) Studies on the mechanism of action of channel-forming colicins using artificial membranes. J Membrane Biol 79: 105–118

    Article  CAS  Google Scholar 

  • De Graaf FK, Oudega B (1986) Production and release of cloacin DF13 and related colicins. Curr Top in Microbiol and Immun 125: 183–205

    Article  Google Scholar 

  • Ebina Y, Nakazawa (1983) Cyclic AMP-dependent and rho-dependent termination of colicin E1 gene transcription. J Biol Chem 258: 7072–7078

    PubMed  CAS  Google Scholar 

  • Eilers M, Schatz G (1986) Binding of a specific ligand inhibits inport of a purified precursor protein into mitochondria. Nature 322: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM, Steitz TA (1981) The spontaneous insertion of proteins into and across membranes. Cell 23: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Fredericq P (1957) Colicins Ann Rev Microbiol 11: 9–22

    Google Scholar 

  • Geli V, Baty D, Crozel V, Morion J, Lloubès R, Pattus F, Lazdunski C (1986) A molecular genetic approach to the functioning of the immunity protein to colicin A. Mol Gen Genet 202: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Geli V, Baty D, Lazdunski C (1987) (to be published) Use of a foreign epitope as a “tag” for the localization of minor proteins within a cell: the case of the immunity protein to colicin A. Proc Natl Acad Sci USA

    Google Scholar 

  • Goldman K, Suit JL, Kayalar C (1985) Identification of the plasmid-encoded immunity protein for colicin E1 in the inner membrane of Escherichia coli. FEBS Lett 190: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1976) Phage T6-colicin K receptor and nucleoside transport in E. coli. FEBS Lett 70: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Unwin PN (1975) Three dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32

    Article  PubMed  CAS  Google Scholar 

  • Holland IB (1975) Physiology of colicin action. Adv Microb Physiol 12: 429–438

    Google Scholar 

  • Howard SP, Leduc M, Van Heijenoort J, Lazdunski C (1987) (to be published) Lysis and release of colicin A in colicinogenic antolytic deficient Escherichai coli. FEMS Lett

    Google Scholar 

  • Jetten AM, Jetten MER (1975) Energy requirement for the initiation of colicin action in E. coli. Biochim Biophys Acta 387: 12–22

    Article  PubMed  CAS  Google Scholar 

  • Kadner RJ, Jr Bassford PJ, Pugsley AP (1979) Colicin receptors and mechanisms of colicin uptake. Zentrablatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 244: 90–104

    CAS  Google Scholar 

  • Knibiehler M, Lazdunski C (1987) (to be published) Conformation of colicin A: possible difference between cytoplasmic and extracellular polypeptide chain. FEBS Lett 216: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Konisky J (1982) Colicins and other bacteriocins with established modes of action. Ann Rev Microbiol 36: 125–144

    Article  CAS  Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Lloubès R, Baty D, Lazdunski C (1986) The promoters of the genes for colicin production, release and immunity in the ColA plasmid: effects of convergent transcription and LexA protein. Nucl Acids Res 14: 2621–2636

    Article  PubMed  Google Scholar 

  • Luirink J, Van der Sande C, Tommassen J, Veitkamp E, de Graaf FK, Oudega B (1985) Mode of action of protein H encoded by plasmid CloDF13: effects of culture conditions and of mutations affecting phospholipase A activity on excretion of cloacin DF13 and on growth and lysis of host cells. J Gen Microbiol 132: 825–834

    Google Scholar 

  • Maker PA, Singer SJ (1983) Disulfide bonds and the translocation of proteins across membranes. Proc Natl Acad Sci USA 83: 9001–9005

    Google Scholar 

  • Mankovich JA, Hsu CH, Konisky J (1986) DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J Bacteriol 168: 228–236

    PubMed  CAS  Google Scholar 

  • Martinez MC, Lazdunski C, Pattus F (1983) Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J 2: 1501–1507

    PubMed  CAS  Google Scholar 

  • Michaelis S, Beckwith J (1982) Mechanism of incorporation of cell-envelope protein in E. coli. Ann Rev Microbiol 36: 435–465

    Article  CAS  Google Scholar 

  • Morion J, Lloubès R, Chartier M, Bonicel J, Lazdunski C (1983) Complete nucleotide sequence of the structural gene for colicin A, a gene translated at non-uniform rate. J Mol Biol 170: 271–285

    Article  Google Scholar 

  • Ohki M, Doi O, Nojima S (1972) Mutant of Escherichia coli K12 deficient for detergent-resistant phospholipase A. J Bacteriol 110: 864–869

    CAS  Google Scholar 

  • Ohno-Iwashita Y, Imajori K (1982) Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. J Biol Chem 257: 6446–6451

    PubMed  CAS  Google Scholar 

  • Pagès J-M, Anba J, Bernadac A, Shinagawa H, Nakata A, Lazdunski C (1984) Normal precursors of periplasmic proteins accumulated in the cytoplasm are not exported post-translationally in E. coli. Eur J Biochem 143: 499–505

    Article  PubMed  Google Scholar 

  • Pattus F, Martinez MC, Dargent B, Cavard D, Verger R, Lazdunski C (1983) Interaction of colicin A with phospholipid monolayers and liposomes. Biochemistry 22: 5698–5703

    Article  CAS  Google Scholar 

  • Pattus F, Cavard D, Crozel V, Baty D, Adrian M, Lazdunski C (1985) pH-dependent membrane fusion is promoted by various colicins. The EMBO J 4: 2469–2474

    CAS  Google Scholar 

  • Pattus F, Heitz F, Martinez C, Provencher SW, Lazdunski C (1985) Secondary structure of the pore-forming colicin A and its C-terminal fragment: experimental facts and structure prediction. Eur J Biochem 152: 681–689

    Article  PubMed  CAS  Google Scholar 

  • Prats M, Tessié J, Toccane JF (1986) Lateral proton conduction at lipid-water interfaces and its implications for the chemiosmotic-coupling hypothesis. Nature 322: 756–758

    Article  CAS  Google Scholar 

  • Pugsley AP, Reeves P (1975) Iron uptake in colicin B resistant mutants of E. coli K12. J Bacteriol 127: 218–228

    Google Scholar 

  • Pugsley AP, Schwartz M (1983) Expression of a gene in a 400 bp fragment of colicin plasmid ColE2-P9 is sufficient to cause host cell lysis. J Bacteriol 156: 109–114

    PubMed  CAS  Google Scholar 

  • Pugsley AP (1984) Genetic analysis of VolN plasmid determinants for colicin production release and immunity. J Bacteriol 158: 523–529

    PubMed  CAS  Google Scholar 

  • Pugsley AP, Schwartz M (1984) Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J 3: 2392–2397

    Google Scholar 

  • Randall LL, Hardy SJ (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46: 921–928

    Article  PubMed  CAS  Google Scholar 

  • Raymond L, Slatin SL, Finkelstein A (1985) Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J Membrane Biol 84: 173–181

    Article  CAS  Google Scholar 

  • Raymond L, Slatin SL, Finkelstein A, Lin QR, Levinthal C (1986) Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayer: translocation of regions outside the channel-forming domain. J Membrane Biol 92: 255–268

    Article  CAS  Google Scholar 

  • Reeves P (1972) The bacteriocins, London: Chapman and Hall

    Google Scholar 

  • Sabet SF, Schnaitman CA (1971) Localization and solubilization of colicin receptors. J Bacteriol 108: 422–430

    PubMed  CAS  Google Scholar 

  • Sauer M, Hantke K, Braun V (1987) Ferric coprogen receptor FhuE of E. coli: processing and sequence common to all TonB-dependent outer membrane receptor proteins. J Bacteriol 169: 2044–2049

    PubMed  CAS  Google Scholar 

  • Schein SJ, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276: 159–163

    Article  PubMed  CAS  Google Scholar 

  • Stroud RM, Finer-Moore R (1985) Acetylcholine receptor, structure function and evolution. Ann Rev Cell Biol 1: 317–351

    Article  PubMed  CAS  Google Scholar 

  • Suit JL, Fan ML, Sabik JS, Lebarre R, Luria SE (1983) Alternative forms of lethality in mitomycin C-induced bacteria carrying ColE1 plasmids. Proc Natl Acad Sci USA 80: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Sun TP, Webster RA (1986) Fii, a bacterial locus required for filamentous phage infection and its relation to colicin-tolerant tolA and tolB. J Bacteriol 165: 107–115

    PubMed  CAS  Google Scholar 

  • Sun TP, Webster RE (1987) (to be published) Nucleotide sequence of a gene cluster involved in the entry of “E” colicins and the single stranded DNA of infecting filamentous phage into E. coli. J Bacteriol

    Google Scholar 

  • Toba MH, Masaki H, Takahisa O (1986) Primary structures of the ColE2-P9 and ColE3-CA38 lysis genes. J Biochem 99: 591–596

    PubMed  CAS  Google Scholar 

  • Tucker A, Pattus F, Tsernoglou D (1986) Crystallization of the C-terminal domain of colicin A carrying the voltage-dependent pore activity of the protein. J Mol Biol 190: 133–134

    Article  PubMed  CAS  Google Scholar 

  • Uratani Y, Kageyama M (1977) A fluorescent probe response to the interaction of Pyocin R1 with sensitive cells. J Biochem 81: 333–341

    PubMed  CAS  Google Scholar 

  • Varenne S, Cavard D, Lazdunski C (1981) Biosynthesis and export of colicin A in Citrobacter freundii CA31. Eur J Biochem 116: 615–620

    Article  PubMed  CAS  Google Scholar 

  • Varenne S, Knibiehler M, Cavard D, Morion J, Lazdunski C (1982) Variable rate of polypeptide chain elongation for colicins A, E2 and E3. J Mol Biol 159: 57–70

    Article  PubMed  CAS  Google Scholar 

  • Varenne S, Buc J, Lloubès R, Lazdunski C (1984) Translation is a non uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180: 549–576

    Article  PubMed  CAS  Google Scholar 

  • Varley JM, Boulnois GJ (1984) Analysis of a cloned colicin Ib gene: complete nucleotide sequence and implication for regulation of expression. Nucl Acids Res 12: 6727–6739

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7 s RNA essential for protein translocation across the endoplasmic reticulum. Nature 299: 691–698

    Article  PubMed  CAS  Google Scholar 

  • Watson RJ, Lau PC, Vernet T, Visentin LP (1984) Characterization and nucleotide sequence of a colicin-release gene in the hic region of plasmid ColE3-CA38. Gene 29: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Weaver C, Kagan B, Finkelstein A, Konisky J (1981) Mode of action of colicin Ib: formation of ion-permeable membrane channels. Biochim Biophys Acta 645: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Wu HC, Tokunaga M, Tokunaga H, Hayashi S, Giam CZ (1983) Post-translational modification and processing of membrane lipoproteins in bacteria. J Cell Biochem 22: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Ebina Y, Miyata T, Nakazawa T, Nakazawa A (1982) Nucleotide sequence of the structural gene for colicin El and predicted structure of the protein. Proc Natl Acad Sci USA 79: 2827–2831

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R (1986) in Protein Compartmentalization. Strauss A, Bovine I, Kreil G (ed), Springer-Verlag Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazdunski, C.J. (1988). What Can We Learn from Colicins about the Dynamics of Insertion and Transfer of Proteins into and Across Membranes. In: Op den Kamp, J.A.F. (eds) Membrane Biogenesis. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73184-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73184-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73186-0

  • Online ISBN: 978-3-642-73184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics