Skip to main content

The Regulation of Bilayer Stability in Bacteria

  • Conference paper
  • 73 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 16))

Abstract

The membranes of prokaryotic and eukaryotic cells contain mixtures of amphipathic lipids. When isolated, the major lipids can form different phase structures upon hydration at physiological temperatures. As discussed in other lectures in this volume (de Kruijff, Op den Kamp), the structures of lipid aggregates are related to the generalized shapes of the molecules. Bilayer-forming lipids (type II) have roughly cylindrical shapes whereas HII phase lipids (type III) have a cone shape in which the area swept out by the motion of the hydrocarbon chains is larger than that occupied by the polar head groups. Hydration, charge repulsion, and hydrogen bonding, can affect the cross-sectional areas of the polar regions, and temperature and chain unsaturation influence the volumes occupied by the hydrocarbon chains (Rilfors et al., 1984; Cullis & Hope, 1985).Among the type II lipids found in prokaryotes are phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), cardiolipin (CL), and diglycosyldiacylglycerols. Among type III lipids are unsaturated species of phosphatidylethanolamine (PE), plasmenylethanolamine (PlaE) and monoglycosyldiacylglycerols (Goldfine, 1982). Lipids that aggregate to form micelles (Type I), for example lyso-phosphoglycerides, are rarely found in large amounts.

text

Research in the author’s laboratory was supported by a research grant from the U.S. Public Health Service, National Institute of Allergy and Infectious Disease, #AI-08903.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DGDG:

diglucosyldiacylglycerol

CL:

cardiolipin

GAPlaE:

glycerol acetal of plasmenylethanolamine

MGDG:

monoglucosyldiacylglycerol

PC:

phosphatidylcholine

PG:

phosphatidyl- glycerol

PME:

phosphatidyl-N-monomethylethanolamine

PS:

phosphatidyl- serine

PlaE:

plasmenylethanolamine

PlaME:

plasmenyl-N-monomethyl- ethanolamine

References

  • Broquist HP, Snell EE (1951) Biotin and bacterial growth 1. Relation to aspartate, oleate, and carbon dioxide. J Biol Chem 188: 431–444

    PubMed  CAS  Google Scholar 

  • Cullen J, Phillips MC, Shipley GG (1971) The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochem J 125: 733–742

    PubMed  CAS  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420

    PubMed  CAS  Google Scholar 

  • Cullis PR, Hope MJ (1985) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance, JE (eds) Biochemistry of lipids and membranes. Benjamin/Cummings, Menlo Park, California, p 25

    Google Scholar 

  • Goldfine H (1982) Lipids of prokaryotes-structure and distribution. Curr Top Membr Transp 17: 1–43

    CAS  Google Scholar 

  • Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25: 1501–1507

    PubMed  CAS  Google Scholar 

  • Goldfine H (1985) Modulation of polar lipid composition by aliphatic chain unsaturation in bacteria. Curr Top Cell Regul 26: 163–174

    PubMed  CAS  Google Scholar 

  • Goldfine H, Khuller GK, Borie RP, Silverman B, Selick H, Johnston NC, Vanderkooi JM, Horwitz AF (1977) Effects of growth temperature and supplementation with exogenous fatty acids on some physical properties of Clostridium butvricum phospholipids. Biochim Biophys Acta 488: 341–352

    PubMed  CAS  Google Scholar 

  • Goldfine H, Johnston NC, Phillips MC (1981) Phase behavior of ether lipids from Clostridium butvricum. Biochemistry 20: 2908–2916

    Article  PubMed  CAS  Google Scholar 

  • Goldfine H, Johnston NC, Bishop DG (1982) Ether phospholipid asymmetry in Clostridium butvricum. Biochem Biophys Res Commun 108: 1502–1507

    Article  PubMed  CAS  Google Scholar 

  • Goldfine H, Johnston NC, Mattai G, Shipley GG (1987) Biochemistry 26: 2814–2822

    Article  PubMed  CAS  Google Scholar 

  • Goldfine H, Rosenthal JJC, Johnston NC (to be published) Lipid shape as a determinant of lipid composition in Clostridium butvricum. The effects of incorporation of various fatty acids on the ratios of the major ether lipids. Biochim Biophys Acta

    Google Scholar 

  • Gruner S (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: A role for nonbilayer lipids. Proc Natl Acad Sci USA 82: 3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Gruner S, Cullis PR, Hope MJ, Tilcock, CPS (1985) Lipid polymorphism: The molecular basis of nonbilayer phases. Ann Rev Biophys Biophys Chem 14: 211–238

    Article  CAS  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13: 121–200

    Article  PubMed  CAS  Google Scholar 

  • Johnston NC, Goldfine H (1985) Phospholipid aliphatic chain composition modulates lipid class composition, but not lipid asymmetry in Clostridium butyricum. Biochim Biophys Acta 813: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Kaufman A (1986) Studies of plasmalogen containing phospholipids in Clostridium pasteurianum and Megasphaera elsdenii. Ph.D. Thesis, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Khuller GK, Goldfine H (1975) Replacement of acyl and alk-1-enyl groins in Clostridium butyricum phospholipids by exogenous fatty acids. Biochemistry 14: 3642–3647

    Article  PubMed  CAS  Google Scholar 

  • Lohner K, Hermetter A, Paltauf F (1984) Phase behavior of ethanolamine plasmalogen. Chem Phys Lipids 34: 163–170

    Article  Google Scholar 

  • Malthaner M, Seelig J, Johnston NC, Goldfine (1987) Deuterium NMR studies on the plasmalogens and the glycerol acetals of plasmalogens of Clostridium butyricum and Clostridium beiierinckii. Biochemistry 26: 5826–5833

    Article  PubMed  CAS  Google Scholar 

  • Rilfors L (1985) Difference in packing properties between iso and anteiso methyl-branched fatty acids as revealed by incorporation into the membranes of Acholeplasma laidlawii strain A. Biochim Biophys Acta 813: 151–160

    Article  CAS  Google Scholar 

  • Rilfors L, Khan A, Brentel I, Wieslander Å, Lindblom G (1982) Cubic liquid crystalline phase with phosphatidyl-ethanolamine from Bacillus megaterium containing branched acyl chains. FEBS Lett 149: 293–298

    Article  CAS  Google Scholar 

  • Rilfors L, Lindblom G, Wieslander Å, Christiansson A (1984) Lipid bilayer stability in biological membranes. Biomembranes 12: 205–245

    CAS  Google Scholar 

  • Silvius JR, Lyons M, Yeagle PL, O’Leary TJ (1985) Thermotropic properties of bilayers containing branched-chain phospholipids. Calorimetric Raman and NMR studies. Biochemistry 24: 5388–5395

    Article  PubMed  CAS  Google Scholar 

  • Tilcock CPS, Bally MB, Farren SB, Cullis PR, Gruner S (1984) Cation -dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: Influence of cholesterol and acyl chain composition. Biochemistry 23: 2696–2703

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldfine, H. (1988). The Regulation of Bilayer Stability in Bacteria. In: Op den Kamp, J.A.F. (eds) Membrane Biogenesis. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73184-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73184-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73186-0

  • Online ISBN: 978-3-642-73184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics