Skip to main content

Protozoans as Agents in Planktonic Nutrient Cycling

  • Conference paper

Part of the book series: NATO ASI Series ((ASIG,volume 25))

Abstract

It is becoming evident that, at least from the ecosystem point of view, a major ‘raison d’etre’ for planktonic protozoans is their function as agents of nutrient transfer and recycling. The term ‘nutrients’ is used here in the broadest sense and applies to carbon, nitrogen, phosphorus and perhaps to other elements despite their different potential pathways. As yet we know almost nothing about the biological cycling in aquatic systems of micronutrients such as iron, magnesium, zinc, cobalt or growth factors such as vitamins (Phillips, 1984). This paper first addresses the important role bacteria play in converting dissolved nutrients to particulates before discussing remineralization by protists and priorities for further research.

“I find” said ’e, “things very much as ‘ow I’ve always found, For mostly they goes up or down or else goes round and round”

(Roundabouts and Swings — PR Chalmers)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldredge AL, Cohen Y (1987) Can Microscale chemical patches persist in the sea? Microelectrode Study of Marine Snow, Faecal Pellets. Science 235:689–691

    Article  Google Scholar 

  • Anderson OK, Goldman, DA, Caron A, Dennett MR (1986) Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol Prqgr Ser 31:47–55

    Article  Google Scholar 

  • Andersson A, Lee C, Azam F, Hogstrom A (1985) Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar Ecol Proq Ser 23:99–106

    Article  CAS  Google Scholar 

  • Antia NJ, Berland BR, Bonin DJ (1980) Proposal for an abridged nitrogen turnover cycle in certain marine planktonic systems involving hypoxanthine-guanine excretion by ciliates and their reutilisation by phytoplankton. Mar Ecol Prog Ser 2:97–103

    Article  CAS  Google Scholar 

  • Azam F Fenchel T Field JG, Meyer-Reil LA and Thingstad T (1983) The Ecological Role of Watercolumn Microbes in the Sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Azam F, Cho BC, Simon M (1990) Bacterial Cycling of Matter in the Pelagic Zone. In: Tilzer MM, Serruya S, Imboden D (eds) Structural and Functional Properties of Large Lakes, (in press)

    Google Scholar 

  • Azam F, Ammerman JW (1984) Cycling of Organic Matter by Bacterioplankton in Pelagic Marine Ecosystems: Microenvironmental Considerations. In: Fasham MJ (ed) Flows of energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, London, p 345

    Google Scholar 

  • Barsdate, RJ, Prentki RT, Fenchel T (1974) Phosphorus Cycle of Model Ecosystems: Significance for Decomposer Food Chains and Effect of Bacterial Grazers. Oikos 23:239–251

    Article  Google Scholar 

  • Bell WH( Mitchell R (1972) Chemotactic and Growth Responses of Marine Bacteria to Algal Extracellular Products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Berman T (1975) Size Fractionation of Natural Aquatic Populations Associated with Autotrophic and Heterotrophic Carbon Uptake. Mar Biol 33:215–220

    Article  Google Scholar 

  • Berman T (1985) Uptake of 32p orthophosphate by algae and bacteria in Lake Kinneret. J Plank Res 7:71–84

    Article  CAS  Google Scholar 

  • Berman T (1988a) Microbes in a Watery World. Hydrobiol 159:5–6

    Article  Google Scholar 

  • Berman T (1988b) Differential uptake of orthophosphate and organic phosphorus substrates by bacteria and algae in Lake Kinneret. J Plank Res 10:1239–1249

    Article  Google Scholar 

  • Berman T (1990) Microbial Food Webs and Nutrient Cycling in Lakes: Changing Perspectives. In: Tilzer MM, Serruya S, Imboden D (eds) Structural and Functional Properties of Large Lakes, (in press)

    Google Scholar 

  • Berman T, Nawrocki M, Taylor GT, Karl DM (1987) Nutrient Flux between bacteria, Bacterivorous Nanoplanktonic Protists and Algae. Mar Microbial Food Webs. 2:69–82

    CAS  Google Scholar 

  • Bird DF, Kalff (1987) Algal Phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32:277–284

    Article  CAS  Google Scholar 

  • Buechler, DG, Dillon RD (1974) Phosphorus regeneration in fresh-water paramecia. J Protozool 21:339–343

    PubMed  CAS  Google Scholar 

  • Caron DA, Goldman JG, Dennett MR (1988) Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiol 159:27–40

    Article  Google Scholar 

  • Cole JJ Pace ML, Findley S (1988) Bacterial production in fresh and saltwater ecosystems : A cross-system overview. Mar Ecol. Progr Ser 43:1–10

    Article  Google Scholar 

  • Currie DJ, Kalff J (1984) The relative importance of bacterio-plankton and phytoplankton in phosphorus uptake in fresh-water. Limnol Oceanogr 29:311–321

    Article  CAS  Google Scholar 

  • Cushing DH. Walsh J (1976) The ecology of Seas. Blackwell Sci Publ. Oxford p 574

    Google Scholar 

  • Derenbach JB, Williams PL LeB (1980) Autotrophic and bacterial production: Fractionation of plankton populations by differential filtration of samples from the English Channel. Mar Biol 25:263–269

    Article  Google Scholar 

  • Ducklow H (1988) Modelling and the structure of microbial food-webs. Abstract. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ducklow HW, Purdie DA, Williams PJ LeB, Davies JM (1986) Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science 232:865–867

    Article  PubMed  CAS  Google Scholar 

  • Estep KW, Davis PG, Keller MD, Sieburth JMcN (1986) How important are Oceanic algal nanoflagellates in bacterivory? Limnol Oceanogr 31:646–650

    Article  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar Ecol Prog Ser 8: 225–231

    Article  Google Scholar 

  • Fenchel T (1986) The ecology of heterotrophic microflagellates. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: The biology of free living phagotrophic protists. Science Tech. Publishers. Madison, Wisc. USA

    Google Scholar 

  • Fenchel T, Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: Anderson JM, Macfaayen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific Publications, Oxford p 285

    Google Scholar 

  • Franko DA, Wetzel RG (1981) Dynamics of cellular and extracellular cAMP in Anabaena flos-aquae (Cyanophyta): Intrinsic culture variability and correlation with metabolic variables. J Phycol 17:129–134

    Article  Google Scholar 

  • Gast V, Horstmann (1983) N-remineralization of phyto- and bacterioplankton by the marine ciliate Euplotes vannus Mar Ecol Prog Ser 13:55–60

    Article  Google Scholar 

  • Goldman JC (1984) Conceptual role for microaggregates in pelagic waters. Bull Mar Sci 35:462–476

    Google Scholar 

  • Goldman JC, Caron DA (1985) Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 899–915

    Article  Google Scholar 

  • Goldman JC, Caron DA, Anderson OK, Dennett MR (1985) Nutrient cycling in a microflagellate food chain : I. Nitrogen dynamics. Mar Ecol Prog Ser 24:231–242

    Article  CAS  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Nutrient cycling in a microflagellate food chain: IV. Phytoplankton-microflagellate interactions. Mar Ecol Prog Ser 38:75–87

    Article  CAS  Google Scholar 

  • Gophen M (1976) Temperature dependence of food, intake, ammonia excretion and respiration in Cerlodaphnia reticulate (Jurine) (Lake Kinneret, Israel). Freshwat Biol 6:451–455

    Article  CAS  Google Scholar 

  • Gophen M, Cavari BZ Berman T (1974) Zooplankton feeding on differentially labelled algae and bacteria. Nature 247:393–394

    Article  Google Scholar 

  • Gude, H (1985) Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb Ecol 11:193–204

    Article  Google Scholar 

  • Hagstrom A, Azam F, Andersson A, Wikner J Rassoulzadegan F (1988) Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagel-lates in the organic fluxes. Mar Ecol Prog Ser 49:171–178

    Article  Google Scholar 

  • Hamilton DT, Taylor WD (1987) Short-term effects of Zooplankton manipulations on phosphate uptake. Can J Fish Aquat Sci 44: 1038–1044

    Article  Google Scholar 

  • Heinbokel JF, Beers JR (1979) Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact on natural assemblages. Mar Biol 52:23–32

    Article  Google Scholar 

  • Heldal M, Norland S, Tumyr O (1985) X-ray microanalytical method for measurement of dry matter ana elemental content of individual bacteria. Appl Environ Micriobiol 50:1251–1257

    CAS  Google Scholar 

  • Jacobsen DM (1988) Trophic behaviour of protoperidinium and related tnecate heterotrophic dinoflagellates. In: Burkill PH, Turley CM and Reid PC eds. Abstracts of NATO-ASI Workshop, Plymouth UK

    Google Scholar 

  • Joint IR (1986) Physiological ecology of picopankton in various oceanographie provinces. Can J Fish Aqu Sci 214:289–309

    Google Scholar 

  • Kimor B (1981) The role of phagotrophic dinoflagellates in marine ecosystems. Kieler Meeresforsch. Sonderh. 5:164–173

    Google Scholar 

  • Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic oligotricnina and other ciliates. Hydrobiol 159: 99–110

    Article  Google Scholar 

  • Lehman JT, Scavia D (1982) Microscale patchiness of nutrients in plankton communities. Science 216:729–730

    Article  PubMed  CAS  Google Scholar 

  • Lehman JT (1987) Microscale nutrient patchiness in plankton communities. ASLO Abstracts p 46

    Google Scholar 

  • Lessard EJ, Swift E (1985) Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar Biol 87: 289–296

    Article  Google Scholar 

  • Lucas M, Probyn TA, Painting SJ (1987) An experimental study of microflagellate bacterivory: further evidence for the importance and complexity of microplanktonic interactions. S Afr J Mar Sci 5:791–808

    Article  Google Scholar 

  • Mitchell JG, Okubo A Fuhrman JA (1985) Microzones surrounding phytoplankton form the basis for a stratified marinemicrobial ecosystem. Nature 316(4):58–59

    Article  CAS  Google Scholar 

  • Pace M, Glasser J, Pomeroy L (1984) a simulation analysis of continental shelf food webs. Marine Biology 31:47–63

    Article  Google Scholar 

  • Paul JH, Carlson DJ (1984) Genetic materials in the marine environment: Implications for bacterial DNA. Limnol Oceanogr 29:1091–1097

    Article  CAS  Google Scholar 

  • Peterson BJ Hobbie JE, Haney JF (1978) Daphnia grazing on natural bacteria. Limnol Oceanogr 23:1039–1044

    Article  Google Scholar 

  • Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298

    Google Scholar 

  • Porter KD (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiol 159:89–98

    Article  Google Scholar 

  • Roget C (1988) Recyclage des sels nutritifs par le macroplancton-micronecton dans le Pacifique tropical Sud-Ouest. Oceanol Acta 11:107–116

    Google Scholar 

  • Sherr, EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 35:348–351

    Article  Google Scholar 

  • Sherr, BF Sherr EB, Berman T (1982) Decomposition of organic detritus: A selective role for microflagellate protozoa. Limnol Oceanogr 27:765–769

    Article  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Apl environ Microbiol 45:1196–1201

    CAS  Google Scholar 

  • Sherr BF, Sherr EB (1984) Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: Klug M, Redd CA (eds) Current perspectives in microbial ecology.

    Google Scholar 

  • Sherr EB, Sherr BF, Patfenhofer G-A (1986) Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs? Mar Microb Food Webs 1:61–80

    Google Scholar 

  • Sherr EB,Sherr BF, Albright LJ (1987) Bacteria: Link or sink. Science 235:88

    Article  Google Scholar 

  • Sherr BF, Sherr EB (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Sherr B, Sherr E, Honkinson CS (1988) Trophic interactions within pelag,ic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159:19–26

    Article  Google Scholar 

  • Sherr BF, Sherr EB Distribution of numbers, biovolumes, and bacterivores within nanoplanktonic size spectra of apochlorotic nanoflagellates in several marine pelagic systems. Mar Microb Food Webs, (submitted)

    Google Scholar 

  • Sieburth J McN (1984) Protozoan bacterivory in pelagic marine waters. In: Hobbie JE, Williams PJ Le B (eds) Heterotrophic activity in the sea. Plenum Press, New York p 405

    Google Scholar 

  • Sieburth J McN, Davis PG (1982) The role of heterotrophic nano-plankton in the arazing and nurturing of planktonic acteria in the sargasso and Caribbean Sea. Ann Inst Oceanogr (-Paris) 58 (Suppl ): 285–296

    Google Scholar 

  • Sieburth J McN, Johnson Eberhardt MA, Sieracki ME, Lidstrom M. Laux D (1987) The first methane-oxidizing bacterium from the upper mixing layer of the Deep Ocean: Methylomonas pelagica sp. nov. Curr Microbiol 14:285–293

    Article  CAS  Google Scholar 

  • Simon N, Tilzer MM (1987) Bacteral response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J Plank Res 9:535–552

    Article  Google Scholar 

  • Steele J, Frost B (1977) The structure of plankton communities. Philos Trans R Soc London, ser B 280:485–534

    Article  Google Scholar 

  • Stockner JG. Antia NJ (1986) Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43:2472–2503

    Article  Google Scholar 

  • Taylor GT (1982) The role of pelagic heterotrophic protozoa in nutrient cycling: a review. Ann Inst Oceanogr Paris 58:227–241

    Google Scholar 

  • Taylor GT, Iturriaga R, Sullivan CW (1985) Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter. Mar Ecol Prog Ser 23:129–141

    Article  Google Scholar 

  • Taylor WD (1984) Phosphorus flux through epilimnetic zooplankton from Lake Ontario: relationship witn body size and significance of phytoplankton. Can J Fish Aquat Sci 41:1702–1712

    Article  Google Scholar 

  • Taylor WD (1986) The effect of grazing by a ciliated protozoan on phosphorus limitation of heterotrophic bacteria in batch culture. J Protozool 33:47–52

    CAS  Google Scholar 

  • Taylor WD, Lean DRS (1981) Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can J Fish Aquat Sci 38:1316–1321

    Article  CAS  Google Scholar 

  • Turner JT, Tester PA, Ferguson RL (1988) The marine Cladoceran Penila avirostris and the “Microbial Loop” of pelagic food webs. Limnol Oceanogr 33:245–255

    Article  Google Scholar 

  • Verity PG (1985) Grazing, respiration and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282

    Article  Google Scholar 

  • Williams PJ Le B (1984) Bacterial production in the marine food chain: the emperor’s new suit of clothes? p 271–299. In: Fasham MR (ed) Flow of energy and materials in marine ecosystems — theory and practice. Plenum Press, Lond, p 733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, T. (1991). Protozoans as Agents in Planktonic Nutrient Cycling. In: Reid, P.C., Turley, C.M., Burkill, P.H. (eds) Protozoa and Their Role in Marine Processes. NATO ASI Series, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73181-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73181-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73183-9

  • Online ISBN: 978-3-642-73181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics