Skip to main content

Dynamics of the Cellular and Extracellular Compartment of Brain Amino Acids — Visions and Reality of the Dialysis Approach

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

Abstract

Dialysis perfusion has in a couple of years attained the position of a most promising approach to the biochemistry of cell to cell signalling in the brain. Still, sampling of fluid which has equilibrated with the tissue is an old tradition in neurochemical work. The dialysis concept advances the investigator one step further away from squirting Ringer’s medium on the brain. However, the in vivo monitoring of compounds in the extracellular space necessitates new considerations. Factors such as turnover and drainage of compounds form the extracellular fluid, sources of recruitment to the latter and thereby possible artifactual results, diffusion coefficients and changes in the extracellular volume become critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacINTOSH, F. C., OBARIN, P. E. (1953). Release of acetylcholine from intact cerebral cortex. Proc. XIX Int. Cong. Physiol, pp. 580–581

    Google Scholar 

  2. BHATTACHARYA, B. K., FELDBERG, W. (1958). Perfusion of cerebral ventricles: assay of pharmacologically active substances in the effluent from the cisterna and the aqueduct. Br. J. Pharmaco1. 13: 163–174.

    CAS  Google Scholar 

  3. GADDUM, J. H. (1961). Push-pull cannulae. J. Physiol. (Lond.) 155: 1 P.

    Google Scholar 

  4. DELGADO, J. M. R., DeFEUDIS, F. V., ROTH, R. H., RYUGO, D. K., MITRUKA, B. M. (1972). Dialytrode for longterm intracerebral perfusion in awake monkeys. Arch. Int de Pharmacodyn. 198: 7–21

    Google Scholar 

  5. NIEOULLON, A., CHERAMY, A., LEVIEL, V., GLOWINSKY, J. (1977). An adaptation of the push-pull cannula method to study the in vivo release of 3H-dopamine synthesized from 3H-tyrosine in the rat caudate nucleus: Effects of various tyrosine physical and pharmacological treatments. J. Neurochem. 28: 819–828.

    Article  PubMed  CAS  Google Scholar 

  6. UNGERSTEDT, U, PYCOCK, C. (1974). Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 1278: 1–5.

    Google Scholar 

  7. HAMBERGER, A., NYSTRÖM, B., BERTHOLD, C.-H., KARLSSON, B., LEHMANN, A. (1983). Extracellular GAGA glutamate and glutamine in vivo - perfusion-dialysis of the rabbit hippocampus. In: Glutamine, Glutamate and GABA in the Central Nervous System ( Hertz, L, Kvamme, E., McGeer, E. G., Schousboe, A., eds.), pp. 473–492. Alan R. Liss, New York.

    Google Scholar 

  8. SANDBERG, M., BUTCHER, S. B., HAGBERG, H. (1986). Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of the rat hippocampus. J. of Neurochem. 47: 178–184.

    Article  CAS  Google Scholar 

  9. IMPERATO, A., DiCHIARA, G. (1984). Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: A new method for the study of the in vivo release of endogenous dopamine and metabolites. J. Neurosci. 4: 966–977.

    PubMed  CAS  Google Scholar 

  10. VAN WYLEN, D. G. L., PARK, T. S., RUBIO, R., BERNE, R. M. (1986). Increases in cerebral interstitial fluid adenosine concentration during hypoxia local potassium infusion and ischemia. J. Cerebr Blood Flow Metab. 6: 522–528.

    Article  Google Scholar 

  11. JACOBSON, I. HAMBERGER, A. (1984). Veratridine-induced release in vivo and in vitro of amino acids in rabbit olfactory bulb. Brain Res. 299: 145–155.

    Article  Google Scholar 

  12. LERMA, J., HERRANZ, A. S., HERRERAS, O., ABRAIRA, V., MARTIN DEL RIO (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384: 145–155.

    Article  PubMed  CAS  Google Scholar 

  13. SANDBERG, M., LINDSTRÖM, S. (1983). Amino acids in the dorsal lateral geniculate nucleus of the cat-collection in vivo. J. Neurosci. Meth. 9: 65–74.

    Article  CAS  Google Scholar 

  14. BENVENISTE, H., DREJER, J., SCHOUSBOE, A., DIEMER, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  15. TOSSMAN, U, UNGERSTEDT, U (1986). Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta Physiol Scand. 128: 9–14.

    Article  PubMed  CAS  Google Scholar 

  16. BENVENISTE, H., DREJER, J., SCHOUSBOE, A., DIEMER, N. H. (1987). Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippo-campus in the rat. J. Neurochem. 49: 729–734.

    Article  PubMed  CAS  Google Scholar 

  17. BENVENISTE, H., DIEMER, N. H. (1987). Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol. 74: 234–238.

    Article  PubMed  CAS  Google Scholar 

  18. JACOBSON, I., SANDBERG, M., HAMBERGER, A. (1985). Mass transfer in brain dialysis devices–a new method for the estimation of extracellular amino acids concentration. J. Neurosci. Meth. 15: 263–268.

    Article  CAS  Google Scholar 

  19. KORF, J., VENEMA, K. (1985). Amino acids in rat striatal dialysates: Methodological aspects and changes after electroconvulsive shock. J. Neurochem. 45: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  20. SHARP, T., MAIDMENT, N. T., BRAZELL, M. P., ZETTERSTRÖM, T., UNGERSTEDT, U., BENNET, G. W., MARSDEN, C. A. (1985). Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. J. Neurosci. 12: 1213–1221.

    Google Scholar 

  21. NICHOLSON, C., PHILLIPS, J. M. (1981). Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. (Lond.) 321: 225–257.

    CAS  Google Scholar 

  22. LAZAREWICZ, J. W., HAGBERG, H., HAMBERGER, A. (1986). Extracellular calcium in the hippocampus of unanesthetized rabbits monitored with dialysis-perfusion. J. Neurosci. Meth. 15: 317328.

    Google Scholar 

  23. HEINEMANN, U, PUMAIN, R. (1980). Extracellular calcium activity changes in cat sensimotor cortex induced by iontophoretic application of amino acids. Exp. Brain Res. 40: 247.

    Article  PubMed  CAS  Google Scholar 

  24. KRNJEVIC, K, MORRIS, M. E., REIFFENSTEIN, R. R., ROPERT, N. (1982). Depth distribution and mechanism of changes in extracellular K and Ca concentrations in the hippocampus. Can. J. Physiol Pharmacol. 60: 1658–1671.

    Article  PubMed  CAS  Google Scholar 

  25. LUX, H. D., HEINEMANN, U., DIETZEL, I. (1986). Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv. Neurol. 44: 619–639.

    PubMed  CAS  Google Scholar 

  26. CHASE, T. N., KOPIN, I. J. (1968). Stimulus-induced release of substances from olfactory bulb using the push-pull cannula. Nature 217: 466–467.

    Article  PubMed  CAS  Google Scholar 

  27. DOLPHIN, A. C., ERRINGTON, M. L., BLISS, T. V. P. (1982). Longterm potentiation of the perforant path in vivo is associated with increased glutamate release. Nature 297: 496–498.

    Article  PubMed  CAS  Google Scholar 

  28. LÖNNROTH, P., JANSSON, P. A., SMITH, U. (1987). A microdialysis method allowing characterization of the intercellular water space in man. Am. J. Physiol. (in press).

    Google Scholar 

  29. TOSSMAN, U, JONSSON, G., UNGERSTEDT, U. (1986). Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol. Scand. 127: 533–545.

    Article  PubMed  CAS  Google Scholar 

  30. JACOBSSON, I., HAMBERGER, A. (1985). Kainic acid-induced changes of extracellular amino acids, evoked potentials and EEG in the rabbit olfactory bulb. Brain Res. 348: 289–296.

    Article  Google Scholar 

  31. HAGBERG, H., LEHMANN, A, SANDBERG, M., NYSTROM, B., JACOBSON, I., HAMBERGER, A. (1985). Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J. Cereb. Blood Flow and Metab. 5. 413–419.

    Article  CAS  Google Scholar 

  32. HERTZ, L. (1979). Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13: 277–323.

    Article  PubMed  CAS  Google Scholar 

  33. WOOD, J. D., SIDHU, H. S. (1986). Uptake of y-aminobutyric acid by brain tissue preparations: a reevaluation. J. Neurochem. 46: 739–744.

    Article  PubMed  CAS  Google Scholar 

  34. LEHMANN, A., ISACSSON, H., HAMBERGER, A. (1983). Effects of in vivo administration of kainic acid on the extracellular amino acid pool inthe rabbit hippocampus. J. Neurochem. 40: 13141320.

    Google Scholar 

  35. LEHMANN, A., HAMBERGER, A. (1984). Dihydrokainic acid affects extracellular taurine and phosphoethanolamine levels in the hippocampus. Neurosc. Lett. 38. 67–72.

    Article  Google Scholar 

  36. WOLFF, J. R. (1979). Quantitative aspects of astroglia. In: Proc. VI Int Congr. Neuropath, Macon & Cie, pp. 327–336.

    Google Scholar 

  37. DOLPHIN, A. C., ARCHER, E. R. (1983). An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci. Lett. 43: 49–54.

    Article  PubMed  CAS  Google Scholar 

  38. KELLER, E., DAVIS, J. L., TACHIKI, K. H., CUMMINS, J. T., BAXTER, C. F. (1981). L-Proline inhibition of glutamate release. J. Neurochem. 37: 1335–1337.

    Article  PubMed  CAS  Google Scholar 

  39. YOUNG, A. M. J., BRADFORD, A. F. (1986). Excitatory amino acid neurotransmitters in the corticostriate pathway-studies using intracerebral microdialysis in vivo. J. Neurochem. 47: 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  40. GIRAULT, J. A., BARBEITO, L., SPAMPINATO, V., GOZLAN, H., GLOWINSKI, J., BESSON, M.-J. (1986). In vivo release of endogenous amino acids from the rat striatum: Further evidence for a role glutamate and aspartate in corticostriatal neurotransmission. J. Neurochem. 47: 98–106.

    Article  PubMed  CAS  Google Scholar 

  41. MORONI, F., PEPEU, G. (1984). The cortical cup technique. In: Measurement of Neurotransmitter Release in vivo ( MORONI, F., PEPEU, G, ed.), pp. 63–79. John Wiley & Sons.

    Google Scholar 

  42. BUTCHER, S. P., HAMBERGER, A. (1987). In vivo studies on the extracellular, and veratrine releasable, pools of amino acids in the rat striatum: Effects of corticostriatal deafferentation and kainic acid lesion. J. Neurochem. 47. 713–721

    Google Scholar 

  43. JACOBSON, I., HAGBERG, H., SANDBERG, M., HAMBERGER, A. (1986). Ouabain-induced changes in extracellular aspartate, glutamate and GABA levels in the rabbit olfactory bulb in vivo. Neurosci. Lett. 64: 211–215.

    Article  CAS  Google Scholar 

  44. TOSSMAN, U., WIELOCH, T., UNGERSTEDT, U. (1985). Gamma-aminobutyric acid and taurine release in the striatum of the rat during hypoglycemic coma studied by microdialysis. Neurosci. Lett. 62: 231–235.

    Article  PubMed  CAS  Google Scholar 

  45. LEHMANN, A. (1987). Alterations in hippocampal extracellular amino acids and purine catabolites during limbic seizures induced by folate injections into the rabbit amygdala. Neuroscience 22: 573–578.

    Article  PubMed  CAS  Google Scholar 

  46. VEZZANI, A., UNGERSTEDT, U., FRENCH, E. D., SCWARCZ, R. (1985). In vivo brain dialysis of amino acids and simultaneous EEG measurements following intrahippocampal quinolinic acid injection: Evidence for a dissociation between neurochemical changes and seizures. J. Neurochem. 45. 335–344.

    Article  PubMed  CAS  Google Scholar 

  47. HAMBERGER, A., NYSTROM, B. (1984). Extra-and intracellular amino acids, in the hippocampus during development of hepatic encephalopathy. Neurochem. Res. 9: 1181–1192.

    Article  PubMed  CAS  Google Scholar 

  48. TOSSMAN, U., ERIKSSON, S., DELIN, A., HAGENFELDT, L., LAW, D., UNGERSTEDT, U. (1983). Brain amino acids measured by intracerebral dialysis in portacaval shuntet rats. J. Neurochem. 41: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  49. NYSTROM, B., HAMBERGER, A., KARLSSON, J.-O. (1985). Changes of extracellular proteins in hippocampus during depolarization. Neurochem. Int 9: 55–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamberger, A., Jacobson, I., Lehmann, A., Sandberg, M. (1988). Dynamics of the Cellular and Extracellular Compartment of Brain Amino Acids — Visions and Reality of the Dialysis Approach. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics