Effect of Nerve Stimulation, K+ Saline and Hypertonic Saline on Classes of Quanta, Quantal Content and Synaptic Vesicle Size Distribution of Torpedo Electric Organ

  • M. E. Kriebel
  • G. Q. Fox
  • D. Kötting
Part of the NATO ASI Series book series (volume 21)


The Torpedo electric organ is an extremely useful preparation for the study of cholinergic mechanisms because of its easy accessibility to biochemical, morphological and physiological methods. A kilogram of electric organ can be obtained from one animal of which 10% are synaptic terminals. At least 3 classes of synaptic vesicles have been described based on density (Stadler and Kiene, 1987) and 2 classes based on diameter (Zimmermann and Whittaker, 1974, 1977). Its unique structure of vertical columns of stacked electrocytes enables one to uniformly field stimulate the tissue and obtain reliable quantitative end-plate potential.


Synaptic Vesicle Hypertonic Saline Sodium Cacodylate MEPP Amplitude Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, M.V.L., Wurzel, M. and Grundfest, H., 1961. The electrophysiology of electric organs of marine electric fishes. I. Properties of electroplaques of Torpedo nobiliana. J. gen. Physiol. 44: 757–804.PubMedCrossRefGoogle Scholar
  2. Boyne, A., T.P. Bohan and T.H. Williams, 1975. Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminal membranes of Narcine brasiliensis electric organ stimulated to fatigue in vivo. J. Cell Biol. 67: 814–825.PubMedCrossRefGoogle Scholar
  3. Breer, H., S.J. Morris and V.P. Whittaker, 1978. A structural model of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata deduced from density measurements at different osmotic pressures. Eur. J. Biochem. 87: 453–458.PubMedCrossRefGoogle Scholar
  4. Carpenter, R.S. and S.M. Parsons, 1977. Electrogenic behavior of synaptic vesicles from Torpedo californica. J. Biol. Chem. 253: 326–329.Google Scholar
  5. Corthay, J., Y. Dunant and F. Loctin. 1982. Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4- aminopyridine in Torpedo. J. Physiol. 325: 461–479.PubMedGoogle Scholar
  6. Dowdall, M.J. and Zimmermann, H., 1974. Evidence for heterogenous pool of acetylcholine in isolated cholinergic synaptic vesicles. Brain Research 71: 160–166.PubMedCrossRefGoogle Scholar
  7. Dunant, Y., 1973. Acetylcholine metabolism and release at the nerve- electroplaque junction. Brain Research 62: 543–549.PubMedCrossRefGoogle Scholar
  8. Dunant, Y. and D. Muller, 1986. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction. J. Physiol. 379: 461–478.PubMedGoogle Scholar
  9. Dunant, Y., J. Gautron, M. Israël, B. Lesbats et R. Manaranche,. 1974. Evolution de la déchargé de 1’ organe elecrique de la Torpille et variations simultanées de 1’acetylcholine au cours de la stimulation J. Neurochem. 23, 635–643.Google Scholar
  10. Dunant, Y., G.J. Jones and F. Loctin, 1982. Acetylcholine measured at short time intervals during transmission of nerve impulses in the electric organ of Torpedo. J. Physiol. 325: 441–460.PubMedGoogle Scholar
  11. Dunant, Y. and D. Muller, 1986. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction. J. Physiol. 379: 461–478.PubMedGoogle Scholar
  12. Erdelyi, L. and W.D. Krenz, 1984. Electrophysiological aspects of synaptic transmission at the electromotor junction of Torpedo marmorata. J. Ccmp. Biochem. Physiol. 79A: 505–511.CrossRefGoogle Scholar
  13. Erxleben, C.; M.E. Kriebel, 1987. Characteristics of spontaneous miniature and subminiature end-plate currents at the neonate and adult mouse neuromuscular junction: J. Physiol, in press.Google Scholar
  14. Fox, G.Q. and D. Kôtting, 1984. Torpedo electromotor system development: A quantitative analysis of synaptogenesis. J. Comp. Neurol. 224: 337–343.Google Scholar
  15. Giompres, P.E., H. Zimmermann & V.P. Whittaker, 1981a. Purification of small dense vesicles from stimulated Torpedo electric tissue by glass beadlumn chromatography. Neuroscience 6: 765–774.PubMedCrossRefGoogle Scholar
  16. Giompres, P.E., H. Zimmermann and V.P. Whittaker, 1981b. Changes in the biochemical and biophysical parameters of cholinergic synaptic vesicles on transmitter release and during a subsequent period of rest. Neuroscience: 6: 775–785.PubMedCrossRefGoogle Scholar
  17. Israël, M., F.M. Meunier; N. Morel and B. Lesbats, 1987. Calcium-induced de sensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein. J. Neurochem. 49: 975–982.PubMedCrossRefGoogle Scholar
  18. Israël, M. and R. Manaranche, 1985. The release of acetylcholine: from a cellular towards a molecular mechanism. Biol. Cell 55: 1–14.PubMedCrossRefGoogle Scholar
  19. Israël, M.,B. Lesbats; R. Manaranche, N. Morel; T. Gulik-Krzywicki and J- C. Dedieu, 1982. Rearrangement of intramembrane particles as a possible mechanism for the release of acetylcholine. J. Physiol. Paris 78: 348–356.Google Scholar
  20. Kiene, M.- L. and H. Stadler, 1987. Synaptic vesicles in electromotoneurones. I. Axonal transport, site of transmitter uptake and processing of a core proteoglycan during maturation. EMBO J. 6: 2209–2215.PubMedGoogle Scholar
  21. Kriebel, M.E. and E. Florey, 1983. Effect of lanthanum ions on MEPP amplitude distributions and vesicles in frog neuromuscular junctions. Neuroscience 9: 535–547.PubMedCrossRefGoogle Scholar
  22. Kriebel, M.E. and C.E. Gross, 1974. Multimodal distribution of frog miniature end plate potentials in adult, denervated, and tadpole leg muscle. J. Gen. physiol. 64: 85–103.PubMedCrossRefGoogle Scholar
  23. Kriebel, M.E., C. Gross and G.D. Pappas. 1987. Two classes of spontaneous miniature excitatory junction potentials and one synaptic vesicle class are present in the ray electrocyte. J. Comp. Physiol. A 160: 331–340.PubMedCrossRefGoogle Scholar
  24. Kriebel, M.E., R. Hanna and C. Muniak, 1986. Synaptic vesicle diameters and synaptic cleft widths at the mouse diaphragm in neonates and adults. Devel. Brain Research 27: 19–29.CrossRefGoogle Scholar
  25. Kriebel, M.E., F. Llados and D.R. Matteson, 1976. Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchonous release. J. Physiol. 262: 553–581.PubMedGoogle Scholar
  26. Kriebel, M.E. and G.D. Pappas, 1984. Hyperosmotic solution can change MEPP amplitude distribution of the frog neuromuscular junction to s- MEPPs with little change in synaptic vesicle numbers. Neuroscience, in press.Google Scholar
  27. Meunier, F. - M., 1984. Relaitonship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ. J. Physiol. 354: 121–137.PubMedGoogle Scholar
  28. Michaelson, D.M., I. Opher and I. Angel, 1980 ATP- Stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J. Neurochem. 35: 116–124.PubMedCrossRefGoogle Scholar
  29. Miledi, R., P. Molinoff & L.T. Potter, 1971. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 229: 554–557.PubMedCrossRefGoogle Scholar
  30. Morel, N., 1976. Effect of choline on the rates of synthesis and of release of acetylcholine in the electric organ of Torpedo. J. of Neurochem. 27: 779–784.CrossRefGoogle Scholar
  31. Muniak, C.G., M.E. Kriebel and C.G. Carlson, 1982. Changes in MEPP and EPP amplitude distributions in the mouse diaphragm during synapse formation and degeneration. Devel. Brain Res. 5: 123–138.CrossRefGoogle Scholar
  32. Ohsawa, K., G.H.C. Dowe, S.J. Morris and V.P. Whittaker, 1979. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata. Purified to constant composition: implications for vesicle structure. Brain Res. 161: 447–457.PubMedCrossRefGoogle Scholar
  33. Perri, V., O. Sacchi, E. Raviola and G. Raviola. 1972. Evaluation of the number and distribution of synaptic vesicles at cholinergic nerve endings after sustained stimulation. Brain Res. 39: 526–529.PubMedCrossRefGoogle Scholar
  34. Soria, B., 1983. Properties of miniature post-synaptic currents at the Torpedo marmorota nerve-electroplate junction. Quart. J. Exp. Physiol. 68: 189–202.Google Scholar
  35. Stadler, H. and M.-L. Kiene, 1987. Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties, exocytosis and insertion of a core proteoglycan into the extracellular matrix. EMBO J. 6: 2217–2221.PubMedGoogle Scholar
  36. Suszkiw, J.B., 1976. Acetylcholine translocation in synaptic vesicle ghosts in vitro. J. Neurochem. 27: 853 - 857.PubMedCrossRefGoogle Scholar
  37. Suszkiw, J.B. and V.P. Whittaker, 1979. Role of vesicle recycling in vesicular storage are release of acetylcholine in Torpedo electroplaque synapses. Prog. Brain Res. 49: 153–162.PubMedCrossRefGoogle Scholar
  38. Walther, C., 1974. Effects of potassium, lanthanum, and black widow spider venom on miniature synaptic potentials in the Torpedo electroplax. J. Comp. Physiol. 90: 71–73.CrossRefGoogle Scholar
  39. Whittaker, V.P., M.J. Dowdall; G.H.C. Dowe; R.M. Facino and J. Scotto, 1974. Proteins of cholinergic synaptic vesicles from the electric organ of Torpedo: characterization of a low molecular weight acidic protein. Brain Res. 75: 115–131.PubMedCrossRefGoogle Scholar
  40. Whittaker, V.P., W.B. Essman and G.H.C. Dowe, 1972. The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochem. J. 128: 833–846.PubMedGoogle Scholar
  41. Zimmermann, H. and C.R. Denston, 1977a. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience 2: 695–714.CrossRefGoogle Scholar
  42. Zimmermann, H. and C.R. Denston, 1977b. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2: 715–730.PubMedCrossRefGoogle Scholar
  43. Zimmermann, H. and V.P. Whittaker, 1974a. Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: A combined biochemical, electrophysiological and morphological study. J. Neurochem. 22: 435–450.PubMedCrossRefGoogle Scholar
  44. Zimmermann, H. and V.P. Whittaker, 1974b. Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. J. Neurochem. 22: 1109–1114.PubMedCrossRefGoogle Scholar
  45. Zimmermann, H. and V.P. Whittaker, 1977. Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature 267: 633–635.PubMedCrossRefGoogle Scholar
  46. Zucker, R. and L. Landò, 1986. Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Science 231: 574–579.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. E. Kriebel
    • 1
  • G. Q. Fox
    • 1
    • 2
  • D. Kötting
    • 1
    • 2
  1. 1.Department of PhysiologySUNY Health Science CenterSyracuseUSA
  2. 2.Department of NeurochemistryMax-Planck-Institut für biophysikalische ChemieGöttingenFed. Rep. Germany

Personalised recommendations