Skip to main content

Molecular Biology Approaches to the Function and Development of CNS Synapses.

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Abstract

Synapses are the structural elements of the neuronal network through which cellular communication occurs. A prerequisite for understanding synaptic information transfer is the identification of the various components of the synaptic machinery. Recently, different molecular genetic techniques have been developed for the isolation of neuron-specific gene products, such as differential screening, gene transfer, deletion mutant analysis, and screening of expression libraries with monoclonal antibodies or selective ligands. Here, we describe two cloning approaches which have been successfully used in our laboratory. The first illustrates how neural gene products can be isolated and identified by selectively cloning mRNAs which appear in the avian optic lobe during the major period of synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aprison, M.H. and E.C. Daly. 1978. Biochemical aspects of transmission at inhibitory synapses: the role of glycine. Advances in Neurochemistry 3: 203–294.

    Article  CAS  Google Scholar 

  • Becker, C.-M., I. Hermans-Borgmeyer, B. Schmitt and H. Betz. 1986. The glycine receptor deficiency of the mutant mouse spastic: evidence for normal glycine receptor structure and localization. J. Neurosci. 6: 1358–1364.

    PubMed  CAS  Google Scholar 

  • Benavides, J., J. Lopez-Lahoya, F. Valdivieso and M. Ugarte. 1981. Postnatal development of synaptic glycine receptors in normal and hyperglycinemic rats. J. Neurosci. 37: 315–320.

    CAS  Google Scholar 

  • Betz, H. 1987. Biology and structure of the mammalian glycine receptor. Trends in Neurosci. 10: 113–117.

    Article  CAS  Google Scholar 

  • Cleveland, D.W., M.A. Lopata, R.J. MacDonald, N.J. Cowan, W.J. Rutter and M.W. Kirschner. 1980. Number and evolutionary conservation of α- and ß-Tubulin and cytoplasmic ß- and g-Actin genes using specific cloned cDNA probes. Cell 20: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.M., D.I. Cohen, E.A. Nielsen, M. Steinmetz, W.E. Paul and L. Hood. 1984. Cell-type specific cDNA probes and the murine I region: The localization and orientation of Aα. Proc. Natl. Acad. Sci. USA 81: 2194–2198.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D., F. Pfeiffer and H. Betz. 1983. Photoaffinity-labelling of the glycine receptor of rat spinal cord. Eur. J. Biochem. 131: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D., F. Pfeiffer, R. Simler and H. Betz. 1985. Purification of the glycine receptor of pig spinal cord. Biochemistry 24: 990–994.

    Article  PubMed  CAS  Google Scholar 

  • Grenningloh, G., A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen, K. Beyreuther, E.D. Gundelfinger and H. Betz. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Gubler, K. and B.J. Hoffmann. 1983. A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, P.H. and N. Brecha. 1984. The avian tectum: A synthesis of morphology and biochemistry. In Comparative neurology of the optic tectum (ed. H. Venegas ) pp. 619–648. Plenum, New York and London.

    Google Scholar 

  • Julien, J.P. and W.E. Mushynski. 1982. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J. Biol. Chem. 257: 10467–10470.

    PubMed  CAS  Google Scholar 

  • Julien, J.-P., D. Meyer, D. Flavell, J. Hurst, and F. Grosveld. 1986. Cloning and developmental expression of the murine neurofilament gene family. Mol. Brain Res. 1: 243–250.

    Article  CAS  Google Scholar 

  • Myers, M.W., R.A. Lazzarini, V. M.-Y. Lee, W.W. Schlaepfer and D.L. Nelson. 1987. The human mid-size neurofilament subunit: a repeated protein sequence and the relatioship of its gene to the intermediate filament gene family. EMBO J. 6: 1617–1626.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, F., D. Graham and H. Betz. 1982. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J. Biol. Chem. 257: 9389–9393.

    PubMed  CAS  Google Scholar 

  • Schmitt, B., P. Knaus, C.-M. Becker and H. Betz. 1987. The Mr 93000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26: 805–811.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, P.R., M.G. Darlison, N. Fujita, D.R. Burt, F.A. Stephenson, H. Rodriguez, L.M. Rhee, J. Ramachandran, V. Reale, T.A. Glencorse, P.H. Seeburg and E.A. Barnard. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Shivers, B., B.S. Schachter and D.W. Pfaff. 1986. In situ hybridization for the study of gene expression in the brain. Methods Enzymol. 124: 497–510.

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa, K., I. Parker and R. Miledi. 1984. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels. Proc. Natl. Acad. Scd. 81: 7994–7998.

    Article  CAS  Google Scholar 

  • Weber, K., G. Shaw, M. Osborn, E. Debus, and N. Geisler. 1983. Neurofilaments, a subclass of intermediate filaments: structure and expression. Cold Spring Harbour Symp. Quant. Biol. 46: 717–729.

    Google Scholar 

  • Zopf, D., I. Hermanns-Borgmeyer, E.D. Gundelfinger and H. Betz. 1987. Identification of gene products expressed in the developing chick visual system: characerization of a middle- molecular-weight neurofilament cDNA. Genes and Development 1: 699–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zopf, D. et al. (1988). Molecular Biology Approaches to the Function and Development of CNS Synapses.. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics