Skip to main content

Human Neuroblastoma Cells: An in Vitro Model for the Study of Mammalian Neuronal Nicotinic Receptors

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

The nicotinic acetylcholine receptor (AChR) is a neurotransmitter receptor which, upon acetylcholine binding, undergoes a conformational change which triggers ion permeability by opening a self contained cation channel. AChR is present in muscle end plates, in ganglia and in CNS, with different structural and functional characteristics. The most complete information on structure and function are available for AChR of skeletal muscles and fish electric organs. In these organs AChR is a membrane complex of approximately 300 KDa composed by four protein subunits α, ß, γ, δ, (Conti-Tronconi and Raftery, 1982 Popot and Changeux, 1984). In the functional receptor five subunits (α2, ß, γ, δ) are arranged with pseudo-five-fold symmetry around the central cation conducting channel. Of the five subunits only the two α-subunits bind acetylcholine and cholinergic agents. Nicotinic acetylcholine receptors are found in many areas of the central nervous system (CNS) and pharmacological studies suggest that they could be divided in subtypes (Wonnacott, 1987)- However, the number of AChR subtypes, their relationship to each other, the role they play in the various areas of the CNS are still controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arimatzu Y, Sebo A and Aaamo T (1977) Localization of a-Bungarotoxin binding site in mouse brain by light and electron microscopic autoradiography. Brain Res 147: 165–169.

    Article  Google Scholar 

  • Balfour DJK (1982) The effects of nicotine on brain neurotransmitter systems. Pharmacol Ther 16: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA, Darlison MG and Berburg P (1987) Molecular biology of the GABA receptor: the receptor/channel superfamily. Trend Neurol. Sci. 10: 502–509.

    Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S and Patrick J (1986) Isolation of a cDNA clone coding for a possible neuronal nicotinic acetylcholine receptor α-subunit. Nature 319: 368–374.

    Article  PubMed  CAS  Google Scholar 

  • Breer H, Kleene R, Hinz G (1985) Molecular formas and subunit strcture of the acetylcholine receptor in the central nervous system of insects. J Neurosci 5: 3386–3392.

    PubMed  CAS  Google Scholar 

  • Cheek TR and Burgoyne RD (1986) Nicotine evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett 207: 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Chiappinelli V (1986) Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. Pharmacol Ther 31: 1–32.

    Article  CAS  Google Scholar 

  • Chiung Chang C (1979) The action of snake venoms on nerve and muscle. Handbook of experimental Pharmacology, Springer Verlag, Berlin, 52: 309–376.

    Google Scholar 

  • Clarke P., Schwartz D, Paul SM, Pert CB, Pert«A (1985) Nicotinic binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-Nicotine and 125I-αBungarotoxin. J Neurosci 5: 1307–1315.

    PubMed  CAS  Google Scholar 

  • Clarke PBS, Hamill GS, Nadi NS, Jakobowitz DM and Pert A (1986) 3H-Nicotine and aBungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. IX. Effects of habenular deafferentation. J Comp Neurol 251: 407–483.

    Google Scholar 

  • Clementi F, Cabrini D, Gotti C and Sher E (1986) Pharmacological charac-terization of cholinergic receptors ina human neuroblastoma cell line. J Neurochem 47: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Cocchia D and Fumagalli L (I98I) Immunocytochemical localization of α-Bungarotoxin receptors in the chick ciliary ganglion: synaptic and extra- synaptic sites. Neurochem Int 3:123–128.

    Google Scholar 

  • Conti Tronconi B, Raftery MA (1982) The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Ann Rev Biochem 5: 491–530.

    Article  Google Scholar 

  • Conti Tronconi BM, Dunn SMJ, Barnard EA, Dolly JO, Lai FA, Ray N and Raftery MA (1985) Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc Natl Acad Sci USA 82: 5208–5212.

    Article  PubMed  CAS  Google Scholar 

  • Goldman D,Deneris E, Luyten W, Kochnar A, Patrick J and Heinemann S (1987) Members of a nicotine acetylcholine receptor gene family are expressed in different regions of the mammalian central neurons system. Cell 48: 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Gotti C,Omini C, Berti F, Clementi F (1985) Isolation of a polypeptide from the venom of Bungarus multicinctus that binds to ganglia and blocks ganglionic transmission in mammals. Neuroscience 15: 563–576.

    Google Scholar 

  • Gotti C, Wanke E, Sher E, Fornasari D, Cabrini D and Clementi F (1986) Acetylcholine operated ion channel and α-Bungarotoxin binding site in a human neuroblastoma cell line beside on different molecule. Biochem Biophys Res Comm 137: 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Sher E, Cabrini D, Bondiolotti G, Wanke E, Mancinelli E and Clementi F (1987) Cholinergic receptors ion channels, neurotransmitter synthesis, and neurite outgrowth are independently regulated during the in vitro differentiation of a human neuroblastoma cell line. Differentiation 34: 144–155.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood FE, Hunter W and Glover JG (1963) The preparation of 125I-labeled human growth hormone of high specific radioactivity. Biochem J 89: 114–117

    PubMed  CAS  Google Scholar 

  • Hall GIT (1984) Pharmacological responses to the intracerebral administration of nicotine. In: Nicotine and tobacco smoking habit ( Balfour DJK, ed) International Enciclopedia of Pharmacology and Therapy, Pergamon Press, New York, pp 45–60.

    Google Scholar 

  • Jacob M and Berg DK (1983) The ultrastruetural localization of α-Bungarotoxin binding sites in relation to synapses on chick ciliary ganglia neurons. J Neurosci 3: 260–271.

    PubMed  CAS  Google Scholar 

  • Knight DE and Kesteren NT (1983) Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B Biol Sci 218: 177–199.

    Article  PubMed  CAS  Google Scholar 

  • Leutz TL and Chester J (1977) Localization of acetylcholine receptors in central synapses. J Cell Biol 75: 258–267.

    Article  Google Scholar 

  • Lukas RJ (1986) Characterization of curaremimetic neurotoxin binding sites on membrane fractions derived from the human medulloblastoma clonal line, TE 671. J Neurochem 46: 1936–1941.

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ and Collins AC (1982) Characterization of nicotine binding in mouse brain and comparison with the binding of aBungarotoxin and Quinidyl Benzylate. Mol Pharmacol 22: 554–565.

    PubMed  CAS  Google Scholar 

  • Marshall LM (1981) Synaptic localization of α-Bungarotoxin binding which blocks nicotinic transmission of frog sympathetic neurons. Proc Natl Acad Sci USA 78: 1948–1952.

    Article  PubMed  CAS  Google Scholar 

  • Messing A and Gonatas NK (1983) Extra-synaptic localization of α-bungarotoxin receptors in cultured chick ciliary ganglion neurons. Brain Res 269: 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Miner LL, Marks MJ and Collins AC (1985) Relationship between nicotine- induced seizures and hippocampal nicotinic receptors. Life Sci 37: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Norman N, Mehraban F, Barnard EA and Dolly JO (1982) Nicotinic acetylcholine receptor from chick optic lobe. Proc Natl Acad Sci USA 71: 1321–1325.

    Article  Google Scholar 

  • Popot GL, Changeux JP (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev 64: 1162–1239

    PubMed  CAS  Google Scholar 

  • Quick M (1982) Presence of an endogenous factor which inhibits binding of α-Bungarotoxin 2.2 to its receptor. Brain Res 245: 57–67.

    Article  Google Scholar 

  • Schwartz RD, Lehman J and Kellar KJ (1984) Presynaptic nicotinic cholinergic receptors labeled by 3H-acetylcholine on catecholamine and serotonin axons in brain. J Neurochem 42: 1495–1498.

    Article  PubMed  CAS  Google Scholar 

  • Sher E Gotti C, Pandiella A, Madeddu L and Clementi F (1988) Intracellular calcium homeostasis in a human neuroblastoma cell line: modulation by depolarization, cholinergic receptors and α-latrotoxin. J Neurochem, in press.

    Google Scholar 

  • Smith MA, Stallberg J, Berg DK and Lindstron J (1985) Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ. J Neurosci 5: 2726–2731.

    PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T and Rink TJ (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334.

    Google Scholar 

  • Tzartos S, Lindstrom JM (1980) Monoclonal antibodies used to probe acetyl-choline receptor structure, localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77: 755–759.

    Article  PubMed  CAS  Google Scholar 

  • Vogel Z, Moloney GJ, Luig A and Daniels MP (1977) Identification of synaptic acetylcholine receptor sites in retina with peroxidase-labeled α-Bungarotoxin. Proc Natl Acad Sci USA 74: 3268–3772.

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Lindstrom JM (1986) Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 25: 2082–2093

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Shoepfer R, Swanson LW, Simmons DM, Lindstrom JM (1987a) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors. Nature 327: 515–518.

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ and Lindstrom JM (1987b) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci USA 84: 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1986) α-Bungarotoxin binds to low affinity nicotine binding sites in rat brain. J Neurochem 47:1706–1712.

    Google Scholar 

  • Wonnacott S (1987) Brain nicotine binding sites. Human Toxicol 6: 343–353.

    Article  CAS  Google Scholar 

  • Yoshida K and Imune H (1979) Nicotinic cholinergic receptors in brain synaptosomes. Brain Res 172: 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Zats M and Brownstein MJ (1981) Injection of a-Bungarotoxin near the supra- chiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity. Brain Res 213: 438–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sher, E., Gotti, C., Fornasari, D., Chini, B., Ogando, A.E., Clementi, F. (1988). Human Neuroblastoma Cells: An in Vitro Model for the Study of Mammalian Neuronal Nicotinic Receptors. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics