Skip to main content

Potassium Channels in Rat Brain Synaptosomes: Pharmacology and Toxicology

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Abstract

Potassium channels appear to be the most diverse group of ion channels in biological systems (Hille, 1984; Yellen, 1987). Neuronal K channels play key roles in the control of membrane potential, action potential repolarization, repetitive firing, and higher functions such as learning and memory. However, relatively little is known about the properties of K channels in presynaptic nerve terminals because these channels are difficult to study with traditional electrophysiological methods. This is a significant gap in our knowledge because these nerve terminal K channels may play a critical role in the control of synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albuquerque EX, Aguayo LG, Warnick JE, Weinstein H, Glick SD, Maayani S, Ickowicz R and Blaustein MP (1981) The behavioral effects of phencyclidines may be due to their blockade of potassium channels. Proc Natl Acad Sei USA 78: 7792–7796

    Article  CAS  Google Scholar 

  • Amando-Hardy M, Ellory JC, Ferreira MG, Fleminger S and Lew VL (1975) Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol (Lond) 250: 32–33 P

    Google Scholar 

  • Bartschat DK and Blaustein MP (1985a) Potassium channels in isolated presynaptic nerve terminals from rat brain. J Physiol (Lond) 361: 419– 440

    Google Scholar 

  • Bartschat DK and Blaustein MP (1985b) Calcium–activated potassium channels in presynaptic nerve terminals from rat brain. J Physiol (Lond) 361: 441–457

    CAS  Google Scholar 

  • Bartschat DK and Blaustein MP (1986) Phencyclidine in low doses selectively blocks a presynaptic voltage-regulated potassium channel in rat brain. Proc Natl Acad Sei USA 83: 189–192

    Article  CAS  Google Scholar 

  • Bartschat DK and Blaustein MP (1988) Psychotomimetic sigma ligands, dexoxadrol and phencyclidine block the same presynaptic potassium channel in rat brain. J Physiol (Lond) in press

    Google Scholar 

  • Benishin CG, Sorensen RG, Krueger BK and Blaustein MP (1987) Four toxin components of green mamba (Dendroaspis angusticeps) venom with different specificities for voltage–gated K channels in rat brain synaptosomes. Fed Proc 46: 504

    Google Scholar 

  • Blatz AL and Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323: 718–720

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Prestipino G, Spadavecchia L, Franciolini F and Possani LD (1987) Blocking of the squid axon K+ channel by noxiustoxin: a toxin from the venom of the scorpion Centruroides noxius. Pflugers Arch 408: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Castellucci VF, Kandel ER, Schwartz JH, Wilson FD, Nairn AC and Greengard P (1980) Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci USA 77: 7492–7496

    Article  PubMed  CAS  Google Scholar 

  • Cone EJ, McQuinn RL and Shannon HE (1984) Structure–activity relationship studies of phencyclidine derivatives in rats. J Pharmacol Exp Therap 228: 147–153

    CAS  Google Scholar 

  • Conn PM, Ganong BR, Ebeling J, Staley D, Neidel JE and Bell RM (1985) Diacylglycerols release LH: Structure-activity relations reveal a role for protein kinase C. Biochem Biophys Res Comm 126: 532–539

    Article  PubMed  CAS  Google Scholar 

  • Dinnan TG, Crunelli V and Kelly JS (1987) Neuroleptics decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Brain Research 407: 159–162

    Article  Google Scholar 

  • Dolly JO, Halliwell JV, Black JD, Williams RS, Pelchen-Matthews A, Breeze AL, Mehraban F, Othman IB and Black AR (1984) Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release. J Physiol (Paris) 74: 280–303

    Google Scholar 

  • Domino EF (ed) (1981) PCP (Phencyclidine): Historical and Current Perspectives. NPP Books, Ann Arbor, MI.

    Google Scholar 

  • Dufton M.J. Protease inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem 153: 647–654 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Farley J and Auerbach S (1986) Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature 319: 220–223

    Article  PubMed  CAS  Google Scholar 

  • Hajos F (1975) An improved method for the preparation of synaptosomal fractions in high purity. Brain Res 93: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Halliwell JV, Othman IB, Pelchan-Matthews A and Dolly JO (1986) Central action of dendrotoxin: selective reduction of a transient K conductance in hippocampus and binding to localized acceptors. Proc Natl Acad Sci USA 83: 493–497

    Article  PubMed  CAS  Google Scholar 

  • Hampton RY, Mdzihradsky F Woods JH and Dahlstrom PJ (1982) Stereospecific binding of phencyclidine in brain membranes. Life Sci 30: 2147–2154

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Loomis CR, Merrill AH Jr. and Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261: 12604–12609

    PubMed  CAS  Google Scholar 

  • Harvey AL and Karlsson E (1980) Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps. A neurotoxin that enhances acetylcholine release at neuromuscular junctions. Naunyn-Schmeideburg’s Arch Pharmacol 312: 1–6

    Article  CAS  Google Scholar 

  • Harvey AL and Karlsson E (1982) Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins. Br J Pharmacol 77: 153–161

    PubMed  CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Associates, Inc. Sunderland, MA

    Google Scholar 

  • Hugues M, Romey G, Duval D, Vincent JP and Lazdunski M (1982) Apamin as a selective blocker of the calcium dependent potassium channel in neuroblastoma cells: voltage clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79: 1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Joubert FJ and Taljaard N (1980) The amino acid sequence of two proteinase inhibitor homologues from Dendroaspis angusticeps venom. Hoppe-Seyler’s Z. Physiol. Chem 361: 661–674

    Article  CAS  Google Scholar 

  • Krueger BK and Blaustein MP (1980) Sodium channels in presynaptic nerve terminals. Regulation by neurotoxins. J Gen Physiol 76: 287–313

    Article  PubMed  CAS  Google Scholar 

  • Krueger BK, Ratzlaff RW, Strichartz GR and Blaustein MP (1979) Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain. J Membrane Biol 50: 287–310

    Article  CAS  Google Scholar 

  • Levitan IB (1985) Phosphorylation of ion channels. J Membrane Biol 87: 177–190

    Article  CAS  Google Scholar 

  • Malenka RC, Madison DV and Nicholl RA (1986) Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321: 695– 697

    Google Scholar 

  • McCann JD and Welsh MJ (1987) Neuroleptics antagonize a calcium-activated potassium channel in airway smooth muscle. J Gen Physiol 89: 339–352

    Article  PubMed  CAS  Google Scholar 

  • Mehraban F, Breeze AL and Dolly JO (1984) Identification by cross-linking of a neuronal acceptor protein for dendrotoxion, a convulsant peptide. FEBS Lett. 174: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Moczydlowski E, Latorre R and Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature (Lond) 313: 316–318

    Article  CAS  Google Scholar 

  • Nachshen DA (1985) The early time course of potassium–stimulated calcium influx into presynaptic terminals from rat brains. J Physiol (Lond) 361: 251–268

    CAS  Google Scholar 

  • Nachshen DA and Blaustein MP (1980) Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J Gen Physiol 76: 709–728

    Article  PubMed  CAS  Google Scholar 

  • Nachshen DA and Blaustein MP (1982) Influx of calcium, strontium and barium in presynaptic nerve endings. J Gen Physiol 79: 1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Possani LD (1982) The primary structure of noxiustoxin: a K+ channel blocking peptide, purified from the venom of the scorpion Centruroides noxius Hoffmann. Carlsberg Res Commun 47: 285–289

    Article  Google Scholar 

  • Possani LD (1984) Structure of scorpion toxins. In: Tu AT (ed). Handbook of natural toxins. Vol. 2. Insect poisons, allergens and other invertebrate venoms. Marcel Dekker 1984 New York: 513–550

    Google Scholar 

  • Ragowski MA (1985) The A-current: How ubiquitous a feature of excitable cells is it? Trends Neurosci 8: 214–219

    Article  Google Scholar 

  • Romey G and Lazdunski M (1984) The coexistence in rat muscle of two distinct classes of Ca2+ -dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Research Commun 118: 669–674

    Article  CAS  Google Scholar 

  • Salacinski PRP, McLean C, Sykes JEC, Clement-Jones W and Lowry PJ (1981) Iodinationof proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6 –tetrachloro-3a,6a-diphenyl glycoluril (iodogen). Analyt Biochem 117: 136–146

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Phillips M and Miller C (1986) Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated K+ channel. J Biol Chem 261: 14607–14613

    PubMed  CAS  Google Scholar 

  • Sorensen RG, and Blaustein MP (1986) m-Azido-Phencyclidine covalently labels the rat brain PCP receptor, a putative K channel. J Neurosci 6: 3676–3681

    Google Scholar 

  • Sorensen RG and Blaustein MP (1987) The rat brain phencyclidine (PCP) receptor. A putative K channel. Biochem Pharmacol, in press.

    Google Scholar 

  • Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T and Nishizuka Y (1979) Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254: 3692–3695

    PubMed  CAS  Google Scholar 

  • Tamkun MM and Catterall WA (1981) Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Molec Pharmacol 19: 78–86

    CAS  Google Scholar 

  • Williams JT, Egan TM and North RA (1982) Enkephalin opens potassium channels on mammalian central neurones. Nature 299: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Yellen G (1987) Permeation in potassium channels: implications for channel structure. Ann Rev Biophys Biophys Chem 16: 227–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blaustein, M.P. et al. (1988). Potassium Channels in Rat Brain Synaptosomes: Pharmacology and Toxicology. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics