Skip to main content

Excitatory Amino Acids; Physiology, Anatomy and Biochemistry

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

Several amino acids have been suggested to function as excitatory transmitters in the brain. The strongest candidates are glutamate, aspartate and homocysteate. All 3 candidates are released from brain slices in a Ca++ dependent manner. Surprisingly enough there is a good positive correlation between the release of glutamate, aspartate and homocysteate from different regions of the brain (Do et al, 1986), as if they were all released from almost the same structures in the different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beart PM, Summers RJ, Christie MJ (1986) Mapping of excitatory amino acid projections to central gray and nucleus accumbens by D-[3H] aspartate retrograde transport. In: Hicks TP, Lodge D, McLennan H (eds) Excitatory amino acid transmission. Alan R Liss Inc, New York, pp 361–369

    Google Scholar 

  • Cotman CW, Monaghan DT (1987) Chemistry and anatomy of excitatory amino acid systems. In: Meltzer HY (ed) Psychopharmacology: The third generation of progress. Raven Press, New York, pp 192–210

    Google Scholar 

  • Cuénod M, Streit P (1983) Neuronal tracing using retrograde migration of labeled transmitter-related compounds. In: Bjørklund A, Hokfelt T (eds) Handbook of Chemical Neuroanatomy Vol 1. Elsevier, Amsterdam, pp 365–393

    Google Scholar 

  • Curtis DR, Watkins JC (1960) The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6: 117–141

    Article  PubMed  CAS  Google Scholar 

  • De Belleroche JS, Bradford HF (197 3) Amino acids in synaptic vesicles from mammalian cerebral cortex: a reappraisal. J Neurochem 21: 441–451

    Google Scholar 

  • Do KQ, Mattenberger M, Streil P, Cuénod M (1986) In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J Neurochem 46: 779–786

    Article  PubMed  CAS  Google Scholar 

  • Engelsen B, Fonnum F (1983) Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain. Neurosci Lett 42: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Engelsen B, Fonnum F (1985) The effect of methioninesulphoximine, an inhibitor of glutamine synthetase on levels of amino acids in the intact and decorticated rat neostriatum. Brain Res 338: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Engelsen B, Westerberg E, Fonnum F, Wieloch T (1986) Effects of insulin-induced hypoglycemia on the concentrations of glutamate and related amino acids and energy metabolites in the intact and decorticated rat neostriatum. J Neurochem 47: 1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Mullen JMH, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO (1985) N-acetyl-aspartyl glutamate: possible role as the neurotransmitter of the lateral olfactory tract. Proc Natl Acad Sci USA 82: 3894–3897

    Article  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1985) Determination of transmitter amino acid turnover. In: Bolton AA, Baker GB, Wood JD (eds) Neuromethods Vol 3 Amino Acids. Humana Press, Clifton, New Jersey, pp 201–237

    Google Scholar 

  • Fonnum F, Soreide A, Kvale I, Walker J, Walaas I (1981) Glutamate in corticofugal fibres. Advances in Biochem Psychopharmacol 27: 29–41

    CAS  Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7: 103–200

    Article  CAS  Google Scholar 

  • Fykse EM, Fonnum F (1988) Uptake of GABA by a synaptic vesicle fraction isolated from rat brain. J Neurochem 50: (in press)

    Google Scholar 

  • Koller KJ, Zaczek R, Coyle JT (1984) N-acetylaspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 43: 1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Korf J, Venema K (1983) Amino acids in the substantia nigra of rats with striatal lesions produced by kainic acid. J Neurochem 40: 1171–1173

    Article  PubMed  CAS  Google Scholar 

  • Lahndesmäke P, Karppinen A, Saarni H, Winter R (1977) Amino acids in the synaptic vesicle fraction from calf brain: control and metabolism. Brain Res 138: 295–308

    Article  Google Scholar 

  • Minchin MCW, Fonnum F (1979) The metabolism of GABA and other amino acids in rat substantia nigra slices following lesions of the striatonigral pathway. J Neurochem 32: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Monaghan AT, Cotman CW (1982) The distribution of 3H-kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252: 91–100

    Article  PubMed  CAS  Google Scholar 

  • Monaghan AT, Cotman CW (1985) Distribution of NMDA sensitive L-3H-glutamate binding sites in rat brain. J Neurochem 5: 2909–2919

    CAS  Google Scholar 

  • Monaghan AT, Yao D, Cotman CW (1984) Distribution of 3H-AMPA binding sites in rat brain as determined by quantitative autoradiography. Brain Res 324: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV, White WF, Vaca KW, Perry BW, Cotman CW (1978) Biochemical correlates of transmission mediated by glutamate and aspartate. J Neurochem 31: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of flurocitrate. J Neurochem 48: 1377–1385

    Article  PubMed  CAS  Google Scholar 

  • Paulsen RE, Fonnum F (1988) The regulation of transmitter GABA synthesis and metabolism illustrated by the effect of gammavinyl GABA and hypoglycemia. J Neurochem 50: (in press).

    Google Scholar 

  • Rainbow TC, Wieczorek CM, Halpain S (1984) Quantitative autoradiography of binding sites for 3H-AMPA, a structural analogue of glutamic acid. Brain Res 309: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Rassin DH (1972) Amino acids as putative transmitters: failure to bind synaptic vesicles of guinea-pig cerebral cortex. J Neurochem 19: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GLeM (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329: 364–367

    Article  PubMed  CAS  Google Scholar 

  • Tieman SB, Kolsdrug JM, Neale JH (1987) N-acetyl-aspartylglutamate immunoreactivity in neurons of the cat visual system. Brain Res 420: 188–193

    Article  PubMed  CAS  Google Scholar 

  • Walaas I, Fonnum F (1979) The effect of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat. Neuroscience 4: 209–218

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ (1980) Glutaminase and aspartate aminotransferase decrease in cochlear nucleus after lesion of the auditory nerve. Brain Res 190: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L, Toggenburger G, Cuenod M (1983) Aspartate: possible neurotransmitter in cerebellar climbing fibers. Science 216: 78–80

    Article  Google Scholar 

  • Zaczek R, Koller KJ, Carpenter DO, Fisher R, Ffrench-Mullen JM, Coyle JT (1986) Interactions of acidic peptides: Excitatory amino acid receptors. In: Roberts PJ, Storm-Mathisen J, Bradford HF (eds) Excitatory amino acids. Macmillan, Houndsmills and London, pp 397 - 409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fonnum, F., Fykse, E.M., Paulsen, R. (1988). Excitatory Amino Acids; Physiology, Anatomy and Biochemistry. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics